FINAL Screening Level Human Health and Ecological Risk Assessment

August 2023 Revised February 2024

Spent Catalyst Release from Martinez Refining Company

Prepared for:

Contra Costa Health Department Hazardous Materials Program (CCHHMP)

Prepared by:

TRC Concord, CA and Fort Collins, CO

Table of Contents

	Acron	yms and Abbreviations	iii
	Gloss	ary	iv
	Execu	utive Summary	v
1.0	INTR	ODUCTION	1
	1.1	Purpose	1
	1.2	Background	1
	1.3	Conceptual Site Model Development	2
2.0	SOIL	INVESTIGATION	4
	2.1	Scope of Work	4
		2.1.1 Pre-Field Activities	4
		2.1.2 Soil Sampling	4
		2.1.3 Summary of Results	5
	2.2	Quality Assurance / Quality Control	5
3.0	DAT	A EVALUATION	7
	3.1	Data Comparison to Expected Background Range	7
		3.1.1 Arsenic Background	7
	3.2	Data Composition and Comparison to Spent Catalyst Dust and Bulk Samples	7
4.0	SCR	EENING LEVEL HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT	·8
	4.1	Methodology	8
		4.1.1 Background Approach	9
	4.2	Data Comparison to Soil Standards for Human Health	10
		4.2.1 Arsenic Uptake by plants	11
	4.3	Data Comparison to Ecological Soil Standards	12
5.0	CON	CLUSIONS AND RECOMMENDATIONS	14
6.0	REF	ERENCES	15

Charts

Chart 1. S	ite Investigation	Timeline	Error! Bookmark not defined.
onart i. c	nto invooligation		

Tables

- Table 1. Summary of November 2022 Bulk and Wipe Data
- Table 2. Summary of Regional Soil Background Studies
- Table 3. Summary of Soil Data and Comparison to Expected Background Range
- Table 4. Summary of Soil Data and Residential Soil Health Standards
- Table 5. Summary of Human Health Risks from Direct Contact with Soil and Ingestion of Homegrown Produce
- Table 6. Summary of Soil Data and Ecological Soil Standards
- Table 7. Summary of Ecological Risks

i

Figures

Figure 1. Soil Sampling Locations

- Figure 2. Human Health and Ecological Conceptual Site Model
- Figure 3. Aluminum Soil Data Comparison
- Figure 4. Arsenic Soil Data Comparison
- Figure 5. Barium Soil Data Comparison
- Figure 6. Beryllium Soil Data Comparison
- Figure 7. Chromium Soil Data Comparison
- Figure 8. Cobalt Soil Data Comparison
- Figure 9. Copper Soil Data Comparison
- Figure 10. Lead Soil Data Comparison
- Figure 11. Molybdenum Soil Data Comparison
- Figure 12. Nickel Soil Data Comparison
- Figure 13. Selenium Soil Data Comparison
- Figure 14. Vanadium Soil Data Comparison
- Figure 15. Zinc Soil Data Comparison

Appendices

- Appendix A. Laboratory Analytical Report for November 2022 Bulk Data
- Appendix B. Laboratory Analytical Report for November 2022 Dust Data
- Appendix C. Soil Sampling Standard Operating Procedure and May 2023 Field Notes
- Appendix D. Laboratory Analytical Report for May 2023 Soil Data
- Appendix E. May 2023 Soil Data Validation Report
- Appendix F. Compositional Pie Charts for Soil, Bulk, and Dust Data
- Appendix G. Human Health Risk Evaluation
- Appendix H. Homegrown Produce Risk Evaluation
- Appendix I. Ecological Risk Evaluation
- Appendix J. Responses to MRC Oversight Committee Comments
- Appendix K. Responses to Public Comments

Acronyms and Abbreviations

Notation	Definition
ATSDR	The Agency for Toxic Substance and Disease Registry
BAAQMD	Bay Area Air Quality Management District
COPC	Chemical of Potential Concern
CSM	Conceptual Site Model
DTSC	California Department of Toxic Substances Control
ESL	Environmental Screening Level
ESSL	Ecological Soil Screening Level
HERO	Human and Ecological Risk Office
н	Hazard Index
HQ	Hazard Quotient
LOEs	Lines of Evidence
mg/kg	Milligrams per Kilogram
mg/L	Milligrams per Liter
MRC	Martinez Refining Company
QC	Quality Control
RPD	Relative Percent Difference
SFBRWQCB	San Francisco Region Water Quality Control Board
SLHHERA	Screening Level Human Health and Ecological Risk Assessment
SOP	Standard Operating Procedure
USEPA	U.S. Environmental Protection Agency

Glossary

Term	Definition
Agency for Toxic Substances and Disease Registry (ATSDR)	A Federal public health agency of the United States Department of Health and Human Services.
Chemicals of Potential Concern (COPCs)	A chemical identified for further evaluation in a risk evaluation because its concentration may exceed a screening level.
Conceptual Site Model (CSM)	Graphical representation of how a contaminant is released into the environment and is transported to various media that humans and animals may contact.
Deionized (DI) Water	Substance having had the ions or ionic constituents removed.
Ecological Soil Screening Levels (ESSLs)	Soil contaminant concentrations associated with an exposure dose equivalent to a no-observed-adverse-effect level.
Hazard Index (HI)	Sum of hazard quotients for substances that affect the same target or organ system.
Hazard Quotient (HQ)	The ratio of the potential exposure to a substance and the level at which no adverse effects are expected.
Human Health (HH)	Describing how exposure to a chemical can impact a person's health.
Lines of Evidence (LOEs)	Evidence drawn from one sort of test result that bears on the accuracy of an idea.
Maximum Detected Concentration (MDC)	The maximum concentration in soil that is detected above laboratory reporting limits.
Relative Percent Difference (RPD)	A measure of the change in a value related to the average of that value.
Screening Level Human Health and Ecological Risk Assessment (SLHHERA)	A convential approach to evaluate chemicals in the environment and identify whether their concentrations may pose a potential risk to humans and ecological receptors (e.g., animals) by comparing the concentrations against USEPA or California environmental agency soil standards protective of humans and animals.
U.S. Environmental Protection Agency (USEPA)	An agency of the United States Federal government whose mission is to protect human health and the environment.

Executive Summary

This Screening Level Human Health and Ecological Screening Risk Assessment (SLHHERA) Report provides the background and results of an investigation conducted in May-June 2023 in response to a release of spent catalyst from the Martinez Refining Company (MRC) which occurred in November 2022. The investigation was commissioned by the Contra Costa County Health Department Hazardous Materials Program (County) to determine the nature and extent of the November 2022 release, and to conduct a screening level assessment of health and ecological risk potentially posed to the affected community. This report summarizes the investigation and the findings of the SLHHERA.

The November 24-25, 2022, release of spent catalyst dust into the surrounding community from a Fluid Catalytic Cracker Unit at the MRC facility located at 3485 Pacheco Boulevard in Martinez, California resulted in community observations of metallic dust on surfaces throughout the affected community. Physical evidence of the release was observed and reported by community members as a white powder covering surfaces. This evidence included actual dust particulates observed on vehicles, trash cans, and residential garden areas within the community.

The following objectives of the SLHHERA were identified by the County as an important step in determining the nature and extent of impacts; as part of this determination, an assessment of potential risks and potential need for additional investigation/soil sampling, as applicable, to mitigate any identified risks was initiated:

- Determination of the nature and extent of the release
- Determination of the chemical composition of the dust
- Determination of the extent of dust in soils within the release area
- Determination of potential risks to human and ecological receptors posed by exposure to dust in a residential setting (e.g., in affected soils)
 - Human health risks were conservatively evaluated for a residential setting via comparison to screening levels protective of residential land use
 - Exposure pathways incorporated in the SLHHERA included:
 - Incidental ingestion of soil
 - Dermal contact with soil
 - Inhalation of soil particulates
 - Ingestion of fruits & vegetables affected by constituents in soil (e.g., via root uptake)

The spatial extent of the release area was determined by field surveys of affected areas reported by community members and dispersion modeling conducted by the Bay Area Air Quality Management District (BAAQMD). Following review of the BAAQMD modeling assumptions and the results provided by BAAQMD and with community input, fourteen (14) locations proposed for the collection of soil samples were identified (**Figure 1**). The plan for the collection of soil samples included an analytical program for Eurofins Calscience Environmental Laboratory, a California-certified analytical laboratory to test the soil samples for the fourteen (14) constituents identified in catalyst dust.

۷

The results of the sampling and laboratory analyses were compared to soil health standards to identify potential human and ecological risks to the community. These sampling results were also compared to regional background levels for the naturally occurring metals comprising the catalyst dust.

The findings of the investigation found no increased risk to public health resulting from the November 2022 catalyst dust release in Martinez:

- The most common metal in the catalyst dust is aluminum silicate (analyzed as aluminum); other metals expected in the dust are vanadium, nickel, barium, and zinc. Arsenic and lead are not expected to be present in significant quantities in the catalyst dust.
- No evidence of catalyst dust in collected soil samples was noted (i.e., soil samples did not appear to have typical make-up of spent catalyst dust).
- Metals detected in the soil samples were within expected background ranges for California and Bay Area soils.
- Several soil samples contained levels of metals, (e.g., arsenic and lead) above published health-based screening levels. As stated above, these levels were within expected background ranges for California and Bay Area soils and are not likely to be associated with catalyst dust.

Based on these findings, additional sampling and evaluation is not required.

sample.

1.0 Introduction

1.1 Purpose

This Screening Level Human Health and Ecological Screening Risk Assessment (SLHHERA) Report provides the background and results of an investigation conducted in May-June 2023 in response to a release of spent catalyst from the Martinez Refining Company (MRC) which occurred in November 2022. The investigation was commissioned by the Contra Costa County Health Department Hazardous Materials Program (County) to determine the nature and extent of the November 2022 release, and to conduct a screening level assessment of health and ecological risk potentially posed to the affected community. This report summarizes the investigation and the findings of the SLHHERA.

1.2 Background

The November 24-25, 2022, release of spent catalyst dust into the surrounding community from a Fluid Catalytic Cracker Unit at the MRC facility located at 3485 Pacheco Boulevard in Martinez, California resulted in community observations of metallic dust on surfaces throughout the affected community. Physical evidence of the release was observed and reported by community members as a white powder covering surfaces. This evidence included actual dust particulates observed on vehicles, trash cans, and residential garden areas within the community.

To understand the composition of catalyst dust deposited within the community, on November 26, 2023, MRC collected four (4) bulk samples from the community and one bulk sample collected from the MRC facility containing spent catalyst. In addition, the County collected four wipe samples at locations where catalyst dust was observed to characterize the dust's composition and one background wipe sample. The November 2022 bulk and dust analytical laboratory reports are presented in Appendices A and B, respectively. In addition, the bulk and dust data are summarized in **Table 1**. Although the most common metal in catalyst dust is aluminum silicate (analyzed as aluminum), this metal wasn't included in the bulk sample analysis. The bulk sample collected from MRC appears to mostly contain vanadium, followed by nickel, and then barium. Other metals analyzed, but not found in large quantities were copper. zinc, total chromium, lead, molybdenum, arsenic, selenium, and beryllium. The wipe samples were analyzed for aluminum, which was the major component, followed by zinc, vanadium, and barium. Other metals analyzed, but not found in large guantities were nickel, copper, total chromium, cobalt, and lead. A few metals had some detects and non-detects in the wipe samples (arsenic, molybdenum, selenium), and beryllium was not detected in any of the wipe samples.

The following objectives of the SLHHERA were identified by the County as an important step in determining the nature and extent of impacts; as part of this determination, an assessment of potential risks and potential need for additional investigation/soil sampling, as applicable, to mitigate any identified risks was initiated:

- Determination of the nature and extent of the release
- Determination of the chemical composition of the dust
- Determination of the extent of dust in soils within the release area

- Determination of potential risks to human and ecological receptors posed by exposure to dust in a residential setting (e.g., in affected soils)
 - Human health risks were conservatively evaluated for a residential setting via comparison to screening levels protective of residential land use
 - Exposure pathways incorporated in the SLHHERA included:
 - Incidental ingestion of soil
 - Dermal contact with soil
 - Inhalation of soil particulates
 - Ingestion of fruits & vegetables affected by constituents in soil (e.g., via root uptake)

The spatial extent of the release area was determined by field surveys of affected areas reported by community members and dispersion modeling conducted by the Bay Area Air Quality Management District (BAAQMD). Following review of the BAAQMD modeling assumptions and the results provided by BAAQMD and with community input, fourteen (14) locations proposed for collection of soil samples were identified (**Figure 1**). The plan for collection of soil samples included an analytical program for Eurofins Calscience Environmental Laboratory, a California-certified analytical laboratory to test the soil samples for the constituents identified in the catalyst dust samples and the catalyst bulk sample, as well as a hexavalent chromium, which is a more toxic form of chromium. A total of fourteen (14) metals were analyzed, as well as pH.

1.3 Conceptual Site Model Development

Development of a conceptual site model (CSM) aids in selecting the appropriate screening levels for use in the SLHHERA. The CSM describes the source/release mechanisms of the spent catalyst dust, migration routes for constituents in environmental media, and identifies potential receptors and exposure pathways. The CSM also provides an assessment of complete pathways (USEPA 1989).

The following subsections present information relevant to the development of the CSM for the spent catalyst dust release, which is presented in **Figure 2**.

Contaminant Source and Release Mechanisms

As previously discussed, spent catalyst dust was released between November 24-25, 2022, into the surrounding community from a Fluid Catalytic Cracker Unit at the Martinez Refining Company facility located at 3485 Pacheco Boulevard in Martinez, California. Physical evidence of the release was observed and reported by community members as a white powder covering surfaces in local residential communities. This evidence includes actual dust particulates observed on vehicles, trash cans, and residential garden areas within the community.

Migration Routes (i.e., Fate and Transport)

Chemical release and transport mechanisms carry chemicals from the source to points where human and ecological receptors may be exposed. For source-area constituents to impact potential receptors, a release mechanism (i.e., migration route) must be present for constituent

transport from a source medium (e.g., surface soil) to an exposure medium (e.g., ambient air), which a receptor directly contacts. Several potential release mechanisms associated with the impacted media at the Site were evaluated in the Human Health CSM and include the following:

- Wind erosion and volatilization of soil into ambient air; and
- Deposition in surface soil in surrounding neighborhood.

Potential Receptors and Exposure Pathways

In general, California's Department of Toxic Substance Control (DTSC), Human and Ecological Risk Office (HERO) recommends that a residential scenario be conservatively assumed for site screening and is typically considered protective of other land uses (i.e., industrial, recreational etc. [DTSC 2022a]). As residential neighborhoods are located near the refinery, residents were identified as the most sensitive population of people to evaluate and include all adults and children who live in the vicinity of the refinery. Residents may potentially contact chemicals in surface soil (0-6 inches) via incidental ingestion, dermal contact, or inhalation of airborne soil particulates, referred to in the CSM as direct contact. Note, the list of analytes are all non-volatile metals; therefore, the inhalation of volatiles in ambient air is not a complete exposure pathway. In addition to contacting soil, residents may eat fruits and vegetables from plants grown in their yards. Therefore, the ingestion of homegrown produce is considered a complete exposure pathway.

As shown in **Figure 2**, ecological receptors (e.g., animals) may also be exposed to surface soil. Therefore, they are also evaluated in this SLHHERA.

2.0 Soil Investigation

Soil collection and analysis activities occurred in May 2023 to determine the following objectives:

- 1. Determine whether soil concentrations are within regional background concentrations;
- 2. Determine whether soil concentrations pose a potential human health or ecological risk to the community; and
- 3. Determine whether soil concentrations are the result of spent catalyst release from Martinez Refining Company.

2.1 Scope of Work

2.1.1 Pre-Field Activities

A total of 14 soil sample locations (**Figure 1**) were selected by TRC and the County. Soil samples were collected at these 14 locations based on plume modeling and community input. The locations of the soil samples were also informed by the results of dispersion modeling conducted and previously presented by the BAAQMD.

2.1.2 Soil Sampling

On May 4-5, 2023, TRC collected soil samples using hand tool methods at 14 locations based on plume modeling and community input. To characterize nearby residential soil potentially affected by airborne spent catalyst, surface soil samples (depth of 0-6 inches) were collected at all 14 locations. A duplicate sample was also collected at one location for quality control purposes. No visible dust was observed at any of the sample locations. Field notes of the soil sampling, including photographs are provided as **Appendix C**.

Soil samples were placed in laboratory-provided glass jars and kept on ice. Samples were collected using standard industry practices and following TRC's Standard Operating Procedure (SOP) for soil sampling (included in **Appendix C**), including worker safety protocols, equipment decontamination, sample handling, and chain-of-custody documentation. Upon completion, sample locations were backfilled with soil cuttings to match the existing grade.

The 14 soil samples (plus a duplicate sample) were analyzed by Eurofins Environment Testing laboratory located in West Sacramento, California, a State-certified chemical laboratory. All samples were analyzed for the following metals detected in the catalyst dust sample previously collected by the County:

- Aluminum (USEPA Method 6010B)
- Arsenic (USEPA Method 6010B)
- Barium (USEPA Method 6010B)
- Beryllium (USEPA Method 6010B)
- Chromium, Total (USEPA Method 6010B)
- Chromium, Hexavalent (USEPA Method 7199)

- Cobalt (USEPA Method 6010B)
- Copper (USEPA Method 6010B)
- Lead (USEPA Method 6010B)
- Molybdenum (USEPA Method 6010B)
- Nickel (USEPA Method 6010B)
- Selenium (USEPA Method 6010B)
- Vanadium (USEPA Method 6010B)
- Zinc (USEPA Method 6010B)
- pH (USEPA Method 9045C)

2.1.3 Summary of Results

Copies of the laboratory reports with chain-of-custody documentation are presented in **Appendix D**.

2.2 Quality Assurance / Quality Control

To ensure that the laboratory analytical data are of sufficient quality for the intended purpose, the soil data were evaluated using national and regional data quality protocols for precision, accuracy, and completeness, as well as overall compliance with the stated laboratory methodology in accordance with procedures outlined in *USEPA Region 2 Standard Operating Procedure (SOP) HW-31 (Revision 6)* Analysis of VOCs in Air Contained in Canisters by Method TO-15, June 2014 and *USEPA National Functional Guidelines for Organic (and Inorganic) Superfund Methods Data Review (USEPA-540-R-2017-002, USEPA-540-R-2017-001),* January 2017 (USEPA 2017).

Data precision was evaluated by reviewing field and laboratory duplicate analyses. The relative percent difference between primary and duplicate field Quality Control (QC) samples was used to assess sample homogeneity and whether proper sample collection was employed in the field. The relative percent difference between primary and duplicate laboratory samples was also used to assess whether proper sample preparation took place within the laboratory.

On May 4, 2023, a blind field duplicate soil sample was collected at sample location MRC-8 and analyzed for the analytes and pH listed in Section 2.1.2. For all detected analytes in both MRC-8 and DUP-1, the relative percent difference (RPD) was calculated. Results of analyses have RPD values ranging from 0 to 24.6 percent. No calculated RPDs exceed 50 percent, the limit generally accepted for solid samples.

Additionally, one equipment blank was collected by using laboratory-grade deionized water and tested for the metals listed above and pH. Analyses detected no metals in the equipment blank, with the exception of a low concentration of lead (0.0063 milligrams per liter [mg/L]), just above the reporting limit of 0.0050 mg/L. Lead in the soil samples was generally detected at or below the background concentration with a maximum detection just above the residential screening level at one sample location. Additionally, based on the results of this investigation, lead is not a main driver of risk in soil. Therefore, the low lead detection in the equipment blank is considered to be insignificant for the purposes of this investigation.

The quality assurance/quality control findings were documented in a data validation report, as presented in **Appendix E**. The validation report documents sample custody and condition, in addition to discussing the results of field and laboratory QC analyses. The validation report also lists any qualifications applied to the sample results as a result of these reviews.

Based on the findings of these quality control analyses, the chemical data generated during this investigation are considered valid and acceptable for the purposes of this investigation.

3.0 Data Evaluation

Once soil samples were collected and analyzed, the reported data were compared to a range of acceptable background concentrations in the region, as well as screening levels protective of residents and ecological receptors (e.g., animals). A summary of background studies conducted in the region is discussed below in Section 3.1.

3.1 Data Comparison to Expected Background Range

Metals occur naturally in soil. Therefore, it is important to understand this natural occurrence and what range of concentrations occur naturally, which is called the expected background range. For this SLHHERA, the expected background range exists in the literature, as presented on **Table 2**. These regional background studies were selected to characterize background contribution to overall human health risks. The expected background range presented in **Table 2** is compared to May 2023 soil data, as shown in **Table 3** and **Figures 3 through 15**, **which show that all soil data fall within the expected background range**. A brief description of arsenic background is included below due to arsenic's lower (0.11 milligrams per kilogram [mg/kg]) residential soil health standard.

3.1.1 Arsenic Background

Arsenic is a naturally occurring metal in soil and is commonly found at concentrations greater than risk-based standards. The catalyst dust release occurred in a complex urbanized area surrounded by streets, parking and paved surfaces, and various operating industrial facilities that may contribute to non-site related concentrations via air pollutant depositions or areas affected by runoff from concentrated air pollution depositions.

Due to the historic residential and industrial use of the vicinity surrounding MRC, there is the potential for widespread anthropogenic contamination and elevated levels of arsenic above naturally occurring concentrations and the risk-based screening level for arsenic (0.11 mg/kg). Area background concentrations range from 1 to 31 mg/kg, exceeding the risk-based soil concentration of 0.11 mg/kg. Surface soil samples were collected at 14 locations and all concentrations were within the expected background range of 1 to 31 mg/kg, with the maximum detected concentration for arsenic at 28 mg/kg. Therefore, collected soil concentrations are consistent with the background range expected for this area for all analytes.

3.2 Data Composition and Comparison to Spent Catalyst Dust and Bulk Samples

Appendix F provides a composition analysis of the May 2023 soil samples to determine whether their composition is similar to spent catalyst dust and bulk samples collected in November 2022. The most common metal in catalyst dust is aluminum silicate (analyzed as aluminum), as well as vanadium. Arsenic is not a metal typically found in catalyst dust. Based on the composition analysis, aluminum and vanadium are the main components of both the bulk and wipe samples; however, vanadium was not found in significant quantities in any of the soil samples. In addition, arsenic was not detected in three of the four wipe samples, while it was detected in every soil sample. In general, while it is possible that some catalyst dust is mixed in with soil in the community, the soil samples do not appear to have the same composition as the spent catalyst dust or bulk samples.

4.0 Screening Level Human Health and Ecological Risk Assessment

A SLHHERA was conducted to provide a screening level assessment of the potential for adverse human health effects that may result from exposure to chemicals detected in surface soil at the Site. The SLHHERA was conducted in accordance with DTSC's HERO HHRA Note 4: Guidance for Screening Level Human Health Risk Assessments in conjunction with HERO's Note 3 (DTSC 2022a,b), as well as San Francisco Region Water Quality Control Board's (SFBRWQCB's) Summary of Environmental Screening Levels for Terrestrial Habitat in Significantly Vegetated Area (SFBRWQCB 2019).

The SLHHERA focuses on chemicals detected during the May 2023 sampling event discussed above, as these data are considered representative of current conditions. Eleven (11) of the 14 chemicals were detected in soil and were retained as chemicals of potential concern (COPC) for the risk evaluation. Note, three analytes (molybdenum, selenium, and chromium VI) were not detected in soil and were not retained for further risk evaluation in accordance with DTSC guidance (DTSC 2022a).

4.1 Methodology

Screening levels can be used to simply compare whether a chemical is either above or below the default screening value (DTSC 2022a).Additionally, screening levels can be used to conduct a risk assessment by applying simplified equations to calculate excess cancer risk and noncancer hazard quotient (HQ [DTSC 2022a]).This SLHHERA conducted both screening level comparisons and simplified estimation of potential risk for exposure via soil in residential and plant uptake scenarios,

Excess cancer risks were calculated using the following simplified equation:

$$Cancer Risk = \frac{C_{SS} \times 1x10^{-6}}{Cancer SL}$$

where:

C_{SS} = concentration in surface soil (mg/kg) Cancer _{SL} = cancer-based residential screening level (mg/kg)

Noncancer risks were calculated in accordance with DTSC guidance using the following simplified equation:

Noncancer Risk =
$$\frac{C_{SS} x1}{Noncancer SL}$$

where:

 C_{SS} - concentration in surface soil (mg/kg) Noncancer _{SL} = noncancer-based residential screening level (mg/kg)

Use of the residential soil screening levels is consistent with the CSM (see **Figure 2**) and exposure scenario being evaluated at the Site. In accordance with DTSC guidance, the residential screening levels are based on DTSC's modified SLs in HHRA Note 3 and incorporate DTSC standard default exposure assumptions and toxicity values (DTSC 2019a,b). If a DTSC screening level is not available, the SFBRWQCB residential soil Environmental Screening

Levels (ESLs) or the U.S. Environmental Protection Agency's (USEPA's) Regional Screening Levels for residential soil were applied (SFBRWQCB 2019; USEPA 2023). Screening levels for homegrown produce were calculated based on the potential root uptake of constituents from soil as presented in **Appendix H**. These calculations are based on the equations provided in USEPA's Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities (USEPA 2005) and exposure assumptions for produce provided in the Exposure Factors Handbook (USEPA 2011).

Residential soil screening levels are based on an excess cancer risk level of 1x10⁻⁶ and noncancer HQ of 1. In general, the maximum detected concentration should be used to assess potential human health risks posed by surface soil (DTSC 2022a) This SLHHERA, however, evaluates risks on an individual sample-by-sample basis given the residential nature of exposure potential and the need to characterize the Site extent.

When more than one COPC is present, the cumulative cancer risk and noncancer hazard indices (HI) for all COPCs are calculated by summing the chemical-specific risks. Note, this is a conservative approach, as not all COPCs have the same toxic endpoint. The USEPA has defined what is considered to be an acceptable level of risk. The USEPA considers one in one million (1×10^{-6}) to one in ten thousand (1×10^{-4}) to be the target range for acceptable risk (USEPA 1990). Estimates of lifetime excess cancer risk associated with exposure to chemicals of less than 1×10^{-6} are considered *de minimis*, a risk level that is so low as to not warrant any further investigation or analysis (USEPA 1990). It should be noted that cancer risks in the 1×10^{-6} to 1×10^{-4} range or higher do not necessarily mean that adverse health effects will be observed. The current methodology for estimating the carcinogenic potential of chemicals could overestimate the true risk by a considerable degree.

Within the state of California, CalEPA also generally targets the same range for acceptable risks. However, DTSC's points of departure for risk management decisions are 1×10^{-6} excess cancer risk and a noncancer HI of 1 (DTSC 2022a). If any calculation of risk exceeds the point of departure, current and future risk evaluation and/or risk management decisions may be warranted. This includes the process of using the characterization of health risks and all Lines of Evidence (LOEs), both qualitative and quantitative, to determine the appropriate response actions (DTSC 2023).

4.1.1 Background Approach

Background inorganic elements in soil can prove problematic for risk assessment purposes because these elements detected at a site may be comprised of naturally occurring metals, regional anthropogenic contributions, or a site-specific release (DTSC 2020). Background and ambient concentrations of some inorganic elements can exceed risk-based concentrations. Arsenic is especially problematic since the risk-based soil concentration can sometimes be 100 times below typical background and ambient soil concentrations not related to site-specific releases of arsenic (DTSC 2020).

In accordance with USEPA and DTSC guidance, COPCs should not be eliminated from the risk assessment based on background (USEPA 2002; DTSC 2022a). Instead, USEPA and DTSC guidance states that "background issues for inorganic chemicals are to be addressed during the risk characterization" (DTSC 2022a). HERO recommends the screening level risk assessment include the calculation of both the site-related risk and hazard index and the total risk and hazard index. The latter presents the risk and hazard associated with exposure to all detected

chemicals prior to elimination of inorganic chemicals that are determined to be consistent with site-specific background or ambient concentrations. This information is useful for risk management decisions about appropriate land uses and for public transparency. Therefore, for naturally occurring COPCs at the Site (which in this case includes all the metals), the SLHHERA includes additional consideration of background soil concentrations in the risk evaluation.

Mitigation or remediation is usually not undertaken to reduce the concentration of contaminants below ambient levels, which comprise both naturally occurring background with added anthropogenic source inputs (i.e., ambient) (USEPA 2002).

4.2 Data Comparison to Soil Standards for Human Health

With the exception of homegrown produce, the residential screening levels consider all the above potential exposure routes including ingestion, inhalation of particulates in ambient air, and dermal absorption, and are utilized in the risk characterization below. As ingestion of homegrown produce represents a complete exposure pathway at the Site, the development of homegrown produce screening levels was conducted separately and is discussed in **Appendix H**.

The resulting concentrations of COPCs in the soil samples were compared with applicable human health and ecological screening levels published by the California DTSC HERO, SFBRWQCB, and USEPA, as provided on **Table 4**.

Overall, all COPCs were detected in the 14 soil samples with the exception of chromium VI, molybdenum, and selenium. COPC concentrations were compared to residential screening levels established by the DTSC, SFBRWQCB and/or USEPA, as presented in **Table 4**. The following concentrations exceeded the respective residential soil health standards:

- **Arsenic**. Arsenic exceeded its residential soil health standard of 0.11 mg/kg at all 14 locations.
- Lead. Lead exceeded its residential soil health standard of 80 mg/kg at MRC-1 (82 mg/kg).

As shown in **Table 5** and detailed in **Appendices G and H**, the cumulative cancer risks based on direct contact with surface soil and ingestion of homegrown produce (not excluding background) range from zero $2x10^{-4}$ to $1x10^{-3}$ The risks are above the point of departure of $1x10^{-6}$ and the upper-bound cancer risk level of $1x10^{-4}$ and are generally due to arsenic concentrations. When the background contribution to soil concentrations is excluded (removed), the resulting excess cancer risks all drop to 0, indicating that the arsenic concentrations in soil are within the range of regional background and not attributable to the release of spent catalyst dust. In general, soil concentrations are consistent with background conditions.

As shown in **Table 5** and detailed in **Appendices G and H**, the estimated noncancer HIs based on direct contact with surface soil and ingestion of homegrown produce (not excluding background) range from 15.6 to 93.2. This range is above the acceptable HI of 1 and generally due to arsenic concentrations. When the background contribution to soil concentrations is excluded (removed), the resulting noncancer HIs all drop to 0, indicating that the arsenic concentrations in soil are within the range of regional background and not attributable to the release of spent catalyst dust. In general, soil concentrations are consistent with background conditions.

These LOEs are discussed in detail below.

4.2.1 Arsenic Uptake by plants

Although arsenic concentrations in soil are within the range of regional background and not attributable to the release of spent catalyst dust, community concerns related to ingestion of homegrown produce warrant a closer look at how arsenic is taken up by plants. Plants vary in the amount of arsenic they absorb from the soil and where they store arsenic. Some plants move arsenic from the roots to the leaves, while others absorb and store it in the roots only. Fruit-type vegetables, such as tomatoes, concentrate arsenic in the roots and very little arsenic is taken up in the edible portion of the plant. Leafy vegetables also store arsenic in their roots, but some is also stored in the stems and leaves. Lettuce and some members of the Brassica plant family (e.g., collards, kale, mustard, and turnip greens) store more arsenic in the leaves than do other crops, but not at concentrations high enough to cause concern. Root crops such as beets, turnips, carrots, and potatoes absorb most of the arsenic in the surface skin of the vegetable. By peeling the skins of root crops, you can eliminate the portion of the plant that contains arsenic.

The Agency for Toxic Substances and Disease Registry (ATSDR) published a pamphlet in 2015 called <u>Safe Gardening</u>, <u>Safe Play</u>, and a <u>Safe Home | Spring Valley in Washington DC | ATSDR</u> (cdc.gov) which looks at exposure and risk when arsenic in soil is greater than 20 mg/kg, similar to a handful of May 2023 soil samples (MRC-2 and MRC-4). The ATSDR study concluded that "even for those areas showing elevated levels of arsenic, the uptake into home grown vegetables or fruits, is not likely to be sufficient to cause any health effects to persons gardening in the soil or eating vegetables grown in the garden."

Total concentrations of arsenic in soil are a poor indicator of plant-available arsenic because water-soluble forms are considered the most phytoavailable (Kabata-Pendias and Pendias 1992). The speciation and valence state of arsenic under ambient conditions are greatly influenced by environmental factors such as oxidation-reduction (redox), pH, temperature, and other compounds. Bioavailability and uptake by plants, in turn, depend upon the species of arsenic present (API 1998).

Under low redox potential values typical of flooded conditions and wetland soils, the more mobile, soluble, and phytoavailable reduced state of arsenic (trivalent arsenic) is more abundant than the oxidized state of arsenic (pentavalent arsenic), which is predominant in aerated soils. (API 1998). However, aerated garden soils in neighborhoods surrounding MRC would generally contain the less soluble, less mobile, and less phytoavailable pentavalent arsenic.

Acidic soil (lower pH) promotes arsenic solubility and increases uptake by plants, as observed in several studies where pH decreased from 7 to 5.0 (Marin, et al. 1993; Speir, et al. 1992). Many plant uptake studies are conducted with acidic soils (pH less than 6), which would increase arsenic solubility and bioavailability for plants. Across the 14 soil sample locations, the pH of soil ranged from 5.7 to 7.3, which reduces arsenic plant uptake.

The presence of other metals in the soil (aluminum and iron) tend to sorb to the arsenic in soil, which significantly restricts the downward movement (leaching) of arsenic in soils, as well as the availability of arsenic to plants (Walsh, et al. 1977), (Wauchope 1975). Aluminum is abundant in

the soil (maximum aluminum soil concentration is 23,000 mg/kg) and likely sorb to much of the arsenic, rendering it less available to plant uptake.

Therefore, while concentrations of arsenic in surface soil are reported above the residential soil health standard, soil conditions in the region (e.g., aerated soils with neutral soil pH and high aluminum content) significantly reduce uptake of arsenic into plants and any concern related to consuming homegrown produce

4.3 Data Comparison to Ecological Soil Standards

A screening level ecological risk assessment was conducted for all detected surface soil COPCs. Ecological soil screening levels (ESSLs) were obtained from the SFBRWQCB ESLs and are based on terrestrial habitats that are present in significantly vegetated areas such as parkland or single-family homes with yards (SFBRWQCB 2019). The ESSLs are provided in **Table 6**.

The following concentrations exceeded their ecological soil standards:

- Arsenic. Arsenic exceeded the ecological soil standard of 25 mg/kg at MRC-2 (28 mg/kg).
- **Barium**. Barium exceeded the ecological soil standard of 390 mg/kg at MRC-5 (600 mg/kg) and MRC-7 (560 mg/kg).
- Lead. Lead exceeded the ecological soil standard of 32 mg/kg at MRC-1 (82 mg/kg) and MRC-2 (79 mg/kg).
- Nickel. Nickel exceeded the ecological soil standard of 130 mg/kg at MRC-4 (200 mg/kg).
- **Vanadium**. Vanadium exceeded the ecological soil standard of 18 mg/kg at all 14 locations.

In addition, surface soil concentrations for each detected metal (minus background) were adjusted for each sample location on a point-by point basis. Medium-specific hazard quotients (HQs) were calculated using the following equation.

$$HQ_{xy} = [COPC_{xy}]/ESSL_{xy}$$

Where:

 HQ_{xy} = hazard quotient for a COPC (x) in a given medium (y) COPC_{xy} = the surface soil concentration for COPCs in each sample ESSL_{xy} = the COPC-specific ecological soil screening level

Chemicals with an HQ less than 1 are considered unlikely to pose a risk to ecological receptors. Similar to human health, ecological HQs are then summed to determine the cumulative HI. If all medium-specific HIs are equal to or less than one, then it is reasonable to conclude no unacceptable ecological risks are associated with COPCs at the Site.

As shown in **Table 7** and detailed in **Appendix I**, the estimated ecological HIs based on direct contact (not excluding background) range from 2.7 to 9.2. This range is slightly above the

acceptable HI of 1. When the background contribution to soil concentrations is excluded (removed), the resulting noncancer HIs all drop to 0, indicating that ecological receptors (animals) contacting soil is not a concern when background is considered, as all soil concentrations fall within the expected background range.

5.0 Conclusions and Recommendations

A screening level human health and ecological risk assessment was conducted for receptors potentially exposed to spent catalyst dust deposited in surface soil from the MRC release. Residents may be exposed to surface soil COPCs via incidental ingestion, dermal contact, inhalation of particulates and ingestion of homegrown produce, while ecological receptors (e.g., animals) may be exposed to soils through direct contact. A summary of the risk assessment results after the background contribution of COPCs is accounted for does not indicate any concern to human health (residents) or ecological receptors (e.g., animals). While exceedances of acceptable cancer risk levels and noncancer HIs occur when background contribution is not removed, the following conclusions are made:

- None of the metals analyzed exceed the expected regional background range,
- Two metals (arsenic and lead) exceed residential direct contact screening levels, however these exceedances do not represent the spent catalyst material, as the proportions of the metals found did not match the spent catalyst composition in the bulk material or dust (wipe samples).

Based on these findings, TRC does not recommend additional sampling or further evaluation.

6.0 References

- Agency for The Agency for Toxic Substances and Disease Registry (ATSDR) (2015). <u>Safe</u> <u>Gardening, Safe Play, and a Safe Home | Spring Valley in Washington DC | ATSDR</u> (cdc.qov)
- American Petroleum Institute (API). (1998). Arsenic: Chemistry, Fate, Toxicity, and Wastewater Treatment Options. American Petroleum Institute, Health and Environmental Sciences Department, Publication Number 4676. October.
- California Department of Toxic Substances Control (DTSC). (2019a). *Toxicity Criteria*. Office of Human and Ecological Risk (HERO), HERO Human Health Risk Assessment (HHRA) Note Number: 10, Issue Date: February 25, 2019.
- California Department of Toxic Substances Control (DTSC). (2019b). Human Health Risk Assessment (HHRA) Note Number 1: Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities. California Department of Toxic Substances Control (DTSC) Office of Human and Ecological Risk (HERO). Issue Date: April 9, 2019.
- California Department of Toxic Substances Control (DTSC). (2020). *Human Health Risk Assessment (HHRA) Note Number 11: Southern California Ambient Arsenic Screening Level.* California Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO). Release Date: December 28, 2020.
- California Department of Toxic Substances Control (DTSC). (2022a). *Human Health Risk Assessment (HHRA) Note Number 4: Guidance for Screening Level Human Health Risk Assessment*. California Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO). Issue Date: March 29, 2022.
- California Department of Toxic Substances Control (DTSC). (2022b). *Human Health Risk Assessment (HHRA) Note Number 3: DTSC-modified Screening Levels (DTSC-SLs).* California Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO). Release Date: June 2020 – Revised May 2022.
- Kabata-Pendias, A. and H. Pendias. (1992). *Trace Elements in Soils and Plants*. 2nd edition. CRC Press, Boca Raton, FL.
- Marin, A.R, P.H. Masscheleyn, and W.H. Patrick. 1993. Soil redox-pH stability and its influence on arsenic uptake by rice. Plant and Soil. 152:245-253
- San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). (2019). Summary of Environmental Screening Levels (ESLs). Rev 2, Updated 2022.
- Speir, T.W., J.A. August, and C.W. Feltham. (1992). Assessment of the feasibility of using CCA (copper, chromium and arsenic)-treated and boric acid-treated sawdust as soil amendments. Plant and Soil. 142:235-238

- U.S. Environmental Protection Agency (USEPA). (1989). *Risk Assessment Guidance for Superfund (RAGS)*. Volume I Human Health Evaluation Manual, Part A. EPA/540/1-89-002. December 1989.
- U.S. Environmental Protection Agency (USEPA). (1990). *National Oil and Hazardous Substances Pollution Contingency Plan. Final Rule*. Volume 55, Number 46.55. FR 866. NCP-R2TA-1-2. March 1990.
- U.S. Environmental Protection Agency (USEPA). (2002). *Role of Background in CERCLA Cleanup Program*. OSWER 0285.6-07P. (https://www.epa.gov/risk/role-background-cercla-cleanup-program)
- U.S. Environmental Protection Agency (USEPA). (2005). *Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities.* Final. EPA 530-R-05-006. September.
- U.S. Environmental Protection Agency (USEPA). (2011). *Exposure Factors Handbook*. 2011 Edition. Chapter 13: Intake of Home-Produced Foods. Washington, DC: Office of Research and Development, National Center for Environmental Assessment. EPA/600/R-09/052F. September.
- U.S. Environmental Protection Agency (USEPA). (2017). USEPA National Functional Guidelines for Organic (and Inorganic) Superfund Methods Data Review (EPA-540-R-2017-002, EPA-540-R-2017-001). January.
- U.S. Environmental Protection Agency (USEPA). (2023). *Regional Screening Level (RSL) Summary Table* (TR=1E-06, HQ=1), November 2023.
- Walsh, L.M, M.E. Sumner, and D.R. Keeney. (1977). Occurrence and Distribution of Arsenic in Soils and Plants. Environmental Health Perspectives. 19:67-71.
- Wauchope, R.D. (1975). *Fixation of Arsenical Herbicides, Phosphate and Arsenate in Alluvial Soils.* J. Environ. Qual. 4: 355-358.

Tables

					Sam	ole ID				
	B-1	B-2	B-3	B-4	B-6	D-1	D-2	D-4	D-5	D-6
A stark for			11/26/2022	•	•		11/26	/2022	•	11/28/2022
Analyte			Bulk Sample					Wipe Sample		
		Communi	ty Sample		Source Sample		Communi	ty Sample		Background Sample
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/wipe	ug/wipe	ug/wipe	ug/wipe	ug/wipe
Title 22 Metals	6020/7 (EPA 6020/7	000 series)								
Aluminum						5,900	13,000	56,000	39,000	1,300
Antimony	<24	<3.4	<13	<340	<0.50	1.1	1.6	2.8	1.7	<1.0
Arsenic	<24	<3.4	<13	<340	5.8	<1.0	1.1	2.7	1.8	<1.0
Barium	<240	86	<130	<3,400	63	39	61	140	96	23
Beryllium	<24	<3.4	<13	<340	0.68	<1.0	<1.0	<1.0	<1.0	<1.0
Cadmium	<24	<3.4	<13	<340	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Chromium	<24	15	16	<340	15	5.7	9.5	27	17	3.8
Cobalt	<24	6.5	<13	<340	7.9	1.1	2.4	8.5	5.4	1.2
Copper	<24	23	26	<340	29	14	24	55	37	11
Lead	<24	12	<13	<340	12	6.9	12	36	21	3.3
Mercury	<2.4	<0.34	<1.3	<34	<0.050	0.10	<0.10	0.13	<0.10	<0.10
Molybdenum	<24	<3.4	<13	<340	12	<1.0	2.0	5.2	3.6	<1.0
Nickel	160	200	200	<340	200	17	40	160	110	5.9
Selenium	<24	3.8	<13	<340	3.5	<1.0	<1.0	4.2	3.0	<1.0
Silver	<24	<3.4	<13	<340	<0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Thallium	<24	<3.4	<13	<340	<0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Vanadium	570	580	610	510	510	52	130	540	380	5.8
Zinc	<240	61	200	19,000	16	130	180	370	240	290

Notes:

Bold indicates detection above laboratory reporting limit.

Bulk sample B-5 did not contain enough material to analyze; therefore, no analysis was conducted.

Dust sample D-3 was not collected.

< = not detected at or above specified laboratory reporting limit

mg/kg = milligrams per kilogram

ug/wipe = micrograms per wipe

-- = Not analyzed

				Geometric Mean	Geometric Mean Western United States (West of 96th Meridian)	Arithmetic Mean	95th Percentile		2017 Na Cle	pa County F anup Goals f (mg	ire Backgrour or Metals in ;/kg)	ıd Table Soil			City of Oakla	nd Survey of	95% f Background	UCL Metal Conco	entration Stu	dies (mg/kg)	
Analyte	Expected Background Concentration Range	Additional Background Studies (mg/kg)	Source	California Soils (mg/kg) Bradford-Kearney Foundation Report 1996. Background Concentrations of Trace and Major Elements in California Soils	(mg/kg) Shacklette and Boerngen, 1984. Elements Concentrations in Soils and Other Surficial Materials of the Conterminous United States U.S. Geological Survey Professional Paper 1270.	Summary of Statist Data Sets after Re (mg Analysis of Backgro of Metals in the Berkeley National L June 2002, Rev	ics for Background moval of Outliers /kg) ound Distributions Soil at Lawrence aboratory, Table 3. ised April 2009	UM Geological Area	QLS Geological Area	KL Geological Area	Q/QOA Geological Area	TV/TVP Geological Area	KU/KJFM Geological Area	Lawrence Berkley National Laboratorie S	Colluvian and Fill	Great Valley Group	Moraga Formation	Orinda Formation	San Pablo Group	San Leandro, CA	Union City, CA
Aluminum	58,000 - 71,000	NA	NA	71,000	58,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	1.8 - 31	11	Duverge	2.8	5.5	5.5	17	5.2	7.062	9.3	8.88	30	18.9	19.2	14	31	9.3	17.8	15.7	1.8-5.9	6.92-9.34
Barium	130 - 1,500	1,500	LBNL [a]	468	580	130	280	159	351	328	446	455	482	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	0.368 - 3	3	LBNL [a]	1.14	0.68	NA [b]	NA [b]	0.368	0.733	0.52	1.78	1.73	1.8	1	0.9	1	0.8	1.1	0.8	<0.25-<1.3	0.5-0.81
Chromium, Total	24.8 - 1,690	160	LBNL [a]	76	41	58	100	1,690	29.8	124	53.3	156	75.6	99.6	91.4	59	142.2	95.2	78.6	24.8-43	46.5-112
Chromium, Hexavalent	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt	7.1 - 136	23	LBNL [a]	12.6	7.1	14	22	136	19.48	33.7	31.9	53.9	30.9	NA	NA	NA	NA	NA	NA	NA	NA
Copper	11.8 - 99.7	76	LBNL [a]	24	21	32	58	33.8	30.9	44.93	38.6	59.1	91.3	69.4	59.6	99.7	54.1	66.9	40.9	11.8-68	28.2-60.1
Lead	3.3 - 247	48	LBNL [a]	21.7	17	7	17	14.45	22.22	26.9	117	247	43.7	16.1	14.7	21.5	8.9	14.8	10.3	3.3-10.4	19.8-148
Molybdenum	0.67 - 3.3	3.3	LBNL [a]	0.9	0.85	NA [b]	NA [b]	0.69	0.67	0.77	0.98	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	2.93 - 2,240	55	LBNL [a]	36	15	68	164	2,240	41.9	496	24.4	53	123	119.8	120.2	69.7	100.4	144.3	125.9	2.93-43.60	32.4-60.6
Selenium	0.028 -7	1.1	LBNL [a]	0.028	0.23	NA [b]	NA [b]	1.8	2.4	2.21	1.84	NA	NA	5.6	5.6	4.8	4.7	7	4.9	<0.25-<2.5	0.5
Vanadium	46 - 230	230	LBNL [a]	101	70	46	77	95.5	108.3	60.35	89.5	145	96.9	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	9.3 - 474	150	LBNL [a]	145	55	64	110	90.8	66.88	81.48	108	82	156	106.1	91.5	135.9	84.7	98.3	97.7	9.3-61.3	97.1-474

Notes:

[a] insufficient sample size to calculate statistic

[b] Table 4 of LBNL based on data in S&B paper

Abbreviations:

NA = not available

mg/kg = milligrams per kilogram

95%UCL = 95% Upper Confidence Limit on the arithmetic mean

Source:

Bradford: Bradford, G.R., A.C. Chang, A.L. Page, D. Bakhtark, J.A. Frampton, and H. Wright 1996. Background Concentrations of Trace and Major Elements in California Soils, Kearney Foundation of Soil Science, Division of Agriculture and Natural Resources, University of California, Riverside, 52 p. Duverge: D. J. Duverge Establishing Background Arsenic in Soil of the Urbanized San Francisco Bay Region, Master of Science in Geosciences, December 2011.

LBNL: Lawrence Berkeley National Laboratory Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory, D. Diamond, D. Baskin, D. Brown, L. Lund, J. Najita, and I Javandel, June 2002 Revised April 2009 **S&B:** Shacklette, H.T., and J.G. Boerngen 1984. Element Concentrations in Soils and Other Surficial Materials, Conterminous United States, U.S. Geological Survey Professional Paper 1270. Napa County Fire Background Table. Available online at: https://www.countyofnapa.org/DocumentCenter/View/7998/Napa-County-Fire-BKGD-20180214-V2

Spent Catalyst Release from Martinez Refining Company

Table 3Summary of Soil Data and Comparison to Expected Background RangeSpent Catalyst Release from Martinez Refining Company

								Sample ID	I										
Analyte	MRC-1	MRC-2	MRC-3	MRC-4	MRC-5	MRC-6	MRC-7	MRC-8	MRC-8 /Dup-1	MRC-9	MRC-10	MRC-11	MRC-12	MRC-13	MRC-14	Max	Location	Expected	Are Soil Data
Analyte	5/4/2023	5/5/2023	5/4/2023	5/4/2023	5/5/2023	5/5/2023	5/5/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	Detect	Location	Background Range (mg/kg)	Background Range?
					Title	e 22 Metal	s (Metho	d SW846	6010B) (r	ng/kg)									
Aluminum	9,200	19,000	17,000	9,800	23,000	17,000	21,000	19,000	18,000	9,300	15,000	10,000	15,000	8,900	14,000	23,000	MRC-5	58,000 - 71,000	Yes
Arsenic	7.1	28	11	24	7.5	6.8	8.8	16.0	14.0	6.1	5.1	5.7	3.9	5.4	8.5	28.0	MRC-2	1.8 - 31	Yes
Barium	99	110	150	110	600	170	560	130	130	100	130	98	86	90	86	600.0	MRC-5	130 - 1,500	Yes
Beryllium	0.57	0.53	0.93	0.58	0.61	0.48	0.62	0.77	0.69	0.73	1.2	0.64	0.65	0.55	0.88	1.2	MRC-10	0.368 - 3	Yes
Chromium, Total	22	57	46	87	46	43	51	64	56	24	27	29	20	16	35	87	MRC-4	24.8 - 1,690	Yes
Cobalt	7.1	19	17	16	15	12	18	15	15	6.3	11	7.9	5.1	6.5	9.9	19	MRC-2	7.1 - 136	Yes
Copper	20	53	44	36	44	28	63	48	43	14	30	23	7.9	11	29	63	MRC-7	11.8 - 99.7	Yes
Lead	82	79	31	23	11	31	31	32	25	15	10	13	6.6	18	33	82	MRC-1	3.3 - 247	Yes
Molybdenum	<2.5	<2.4	<2.1	<2.7	<2.4	<2.5	<2.4	<2.3	<2.3	<2.4	<2.2	<2.5	<2.5	<2.4	<2.3	<2.7	MRC-4	0.67 - 3.3	Yes
Nickel	19	56	50	200	44	40	60	65	60	23	30	31	14	13	32	200	MRC-4	2.93 - 2,240	Yes
Selenium	<2.5	<2.4	<2.1	<2.7	<2.4	<2.5	<2.4	<2.3	<2.3	<2.4	<2.2	<2.5	<2.5	<2.4	<2.3	<2.7	MRC-4	0.028 -7	Yes
Vanadium	30	70	60	30	69	59	64	70	64	29	59	34	30	30	54	70	MRC-2/-8	46 - 230	Yes
Zinc	160	82	210	56	65	66	110	88	82	64	79	59	32	41	270	270	MRC-14	9.3 - 474	Yes
					Hexava	lent Chro	omium (M	lethod SW	/846 7199) (mg/kg									
Chromium VI	<0.25	<0.25	<0.22	<0.27	<0.24	<0.23	<0.23	<0.23	<0.23	<0.24	<0.22	<0.25	<0.26	<0.25	<0.23	<0.27	MRC-4	NA	NA
							General	Paramete	rs										
рН	5.9	6.1	6.9	6.9	6.8	7.1	7.2	7.2	6.0	6.5	6.9	7.1	7.3	6.0	5.7	5.7	7-7.3	NA	NA

Notes:

Bold indicates detection above laboratory reporting limit.

< = not detected at or above specified laboratory reporting limit

mg/kg = milligrams per kilogram

NA = Not applicable

Table 4 Summary of Soil Data and Residential Soil Health Standards Spent Catalyst Release from Martinez Refining Company

								Sample ID)									F	Residential Soil Healt	h Standard	ls (mg/kg)
Analyte	MRC-1	MRC-2	MRC-3	MRC-4	MRC-5	MRC-6	MRC-7	MRC-8	MRC-8 /Dup-1	MRC-9	MRC-10	MRC-11	MRC-12	MRC-13	MRC-14	Max Detect	Location	Ingestio	on, Dermal Contact,	Ingestion	of Homegrown
	5/4/2023	5/5/2023	5/4/2023	5/4/2023	5/5/2023	5/5/2023	5/5/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023			Inhalati P	on of Airborne Soil articulates [a]	Pr	oduce [b]
					Title	22 Metal	s (Metho	d SW846	6010B) (I	ng/kg)											
Aluminum	9,200	19,000	17,000	9,800	23,000	17,000	21,000	19,000	18,000	9,300	15,000	10,000	15,000	8,900	14,000	23,000	MRC-5	77,000	USEPA RSL (NC)	30,053	NC
Arsenic	7.1	28	11	24	7.5	6.8	8.8	16.0	14.0	6.1	5.1	5.7	3.9	5.4	8.5	28.0	MRC-2	0.11	DTSC-SL (C)	0.03	C [NC = 5.19]
Barium	99	110	150	110	600	170	560	130	130	100	130	98	86	90	86	600.0	MRC-5	15,000	SFRWQCB-ESL	727	NC
Beryllium	0.57	0.53	0.93	0.58	0.61	0.48	0.62	0.77	0.69	0.73	1.2	0.64	0.65	0.55	0.88	1.2	MRC-10	16	SFRWQCB-ESL	90	NC
Chromium, Total	22	57	46	87	46	43	51	64	56	24	27	29	20	16	35	87	MRC-4	120,000	SFRWQCB-ESL [c]	34,617	NC
Cobalt	7.1	19	17	16	15	12	18	15	15	6.3	11	7.9	5.1	6.5	9.9	19	MRC-2	23	SFRWQCB-ESL	1.8	NC
Copper	20	53	44	36	44	28	63	48	43	14	30	23	7.9	11	29	63	MRC-7	3,100	SFRWQCB-ESL	12	NC
Lead	82	79	31	23	11	31	31	32	25	15	10	13	6.6	18	33	82	MRC-1	80	SFRWQCB-ESL	NA	NA
Molybdenum	<2.5	<2.4	<2.1	<2.7	<2.4	<2.5	<2.4	<2.3	<2.3	<2.4	<2.2	<2.5	<2.5	<2.4	<2.3	<2.7	MRC-4	390	SFRWQCB-ESL	NA	NA
Nickel	19	56	50	200	44	40	60	65	60	23	30	31	14	13	32	200	MRC-4	820	SFRWQCB-ESL	243	NC
Selenium	<2.5	<2.4	<2.1	<2.7	<2.4	<2.5	<2.4	<2.3	<2.3	<2.4	<2.2	<2.5	<2.5	<2.4	<2.3	<2.7	MRC-4	390	SFRWQCB-ESL	NA	NA
Vanadium	30	70	60	30	69	59	64	70	64	29	59	34	30	30	54	70	MRC-2/-8	390	SFRWQCB-ESL	106	NC
Zinc	160	82	210	56	65	66	110	88	82	64	79	59	32	41	270	270	MRC-14	23,000	SFRWQCB-ESL	206	NC
					Hexava	lent Chro	mium (M	ethod SV	V846 7199	9) (mg/kg)										
Chromium VI	<0.25	<0.25	<0.22	<0.27	<0.24	<0.23	<0.23	<0.23	<0.23	<0.24	<0.22	<0.25	<0.26	<0.25	<0.23	<0.27	MRC-4	0.3	SFRWQCB-ESL	NA	NA
							General I	Paramete	ers												
рН	5.9	6.1	6.9	6.9	6.8	7.1	7.2	7.2	6.0	6.5	6.9	7.1	7.3	6.0	5.7	5.	7-7.3		N	4	

Notes:

Bold indicates detection above laboratory reporting limit.

[a] California-specific DTSC or SFRWQCB screening levels assumed. When California-specific screening levels not available, USEPA Residential Soil RSL value assumed.

[b] Based on site-specific plant uptake and homegrown produce risk-based calculation, as presented in Appendix G.

[c] Value not available for total chromium; therefore, trivalent chromium assumed.

< = not detected at or above specified laboratory reporting limit</pre>

C = cancer based on a Target Risk Level = 1E-06

DTSC = California Department of Toxic Substances Control

ESL = Environmental Screening Level

HERO = Human and Ecological Risk Office

mg/kg = milligrams per kilogram

NA = Not applicable

NC = noncancer based on a Target Hazard Quotient = 1.0

RSL = Regional Screening Level

SFRWQCB = San Francisco Regional Water Quality Control Board

USEPA = United States Environmental Protection Agency

References:

San Francisco Bay Regional Water Quality Control Board, Bay Area. Summary of Environmental Screening Levels (ESLs), 2019 (Rev 2), Updated 2022.

Human Health Risk Assessment, Note Number 3, DTSC-modified Screening Levels (DTSC-SLs), California Department of Toxic Substances Control (DTSC), Human and Ecological Risk Office (HERO), Release date: June 2020; Revised May 2022. [Table 1. DTSC-recommended Screening Levels for Soil Analytes]

USEPA Regional Screening Level (RSL) Table. May 2023 update. Available online at: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

Summary of Human Health Risks from Direct Contact with Soil and Ingestion of Homegrown Produce

Spent Catalyst Release from Martinez Refining Company

Exposure Pathways	Background	MRC	C-1	MR	C-2	MRG	C-3	MRG	C-4	MRC	C-5	MRC	2-6	MRC	C-7	MR	C-8	MRC-8 /	/Dup-1	MR	C-9	MRC	-10	MRC	C-11	MRC	-12	MRC	-13	MRC	-14
Exposure Failways	Included?	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI
Soil Ingestion, Dermal, Inhalation (Appendix G)	YES	6.5E-05	18.9	2.5E-04	70.7	1.0E-04	28.5	2.2E-04	60.0	6.8E-05	19.7	6.2E-05	18.0	8.0E-05	23.2	1.5E-04	40.7	1.3E-04	35.7	5.5E-05	15.6	4.6E-05	13.5	5.2E-05	14.7	3.5E-05	10.2	4.9E-05	13.9	7.7E-05	22.0
Home-Grown Produce Ingestion (Appendix H)	YES	2.3E-04	8.7	9.0E-04	22.8	3.5E-04	18.1	7.7E-04	18.6	2.4E-04	16.5	2.2E-04	12.4	2.8E-04	20.2	5.2E-04	17.9	4.5E-04	16.9	2.0E-04	7.1	1.6E-04	11.5	1.8E-04	8.8	1.3E-04	5.4	1.7E-04	6.6	2.7E-04	12.3
Combined Residential Exposure Pathways	YES	2.9E-04	27.6	1.2E-03	93.4	4.5E-04	46.6	9.9E-04	78.7	3.1E-04	36.2	2.8E-04	30.3	3.6E-04	43.4	6.6E-04	58.5	5.8E-04	52.6	2.5E-04	22.7	2.1E-04	25.1	2.4E-04	23.5	1.6E-04	15.6	2.2E-04	20.6	3.5E-04	34.3
	Dealeman	MDC		MD	<u> </u>		<u> </u>	MDO	- A	MDC	2 5	MPC	` 6	MDO	<u>ح</u> ح	MD			/Dup 1	MD	<u> </u>	MPC	10	MPC	11	MPC	10	MPC	12	MPC	1/

Exposure Pathwaya	Background	MRC	C-1	MR	C-2	MR	C-3	MR	C-4	MRC	C-5	MRC	C-6	MR	C-7	MR	C-8	MRC-8	/Dup-1	MR	C-9	MRC	-10	MRC	-11	MRC	-12	MRC	-13	MRC	2-14
Exposure Fairways	Included?	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI	C Risk	NC HI																
Soil Ingestion, Dermal, Inhalation (Appendix G)	NO	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0																
Home-Grown Produce Ingestion (Appendix H)	NO	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0																
Combined Residential Exposure Pathways	NO	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0																

Notes:

all soil concentrations and screening levels in mg/kg

C = cancer based on a Target Risk Level = 1E-06

 $HI = noncancer Hazard Index = \Sigma HQ$

HQ = noncancer Hazard Quotient

NA = Not applicable

NC = noncancer based on a Target Hazard Quotient = 1.0

Table 6 Summary of Soil Data and Ecological Soil Standards Spent Catalyst Release from Martinez Refining Company

								Sample ID)									
Analyte	MRC-1	MRC-2	MRC-3	MRC-4	MRC-5	MRC-6	MRC-7	MRC-8	MRC-8 /Dup-1	MRC-9	MRC-10	MRC-11	MRC-12	MRC-13	MRC-14	Max Detect	Location	Ecological Soil Standards
	5/4/2023	5/5/2023	5/4/2023	5/4/2023	5/5/2023	5/5/2023	5/5/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023			(mg/kg) [a]
					Т	itle 22 Me	etals (Met	thod SW8	846 6010E	3) (mg/kg)							
Aluminum	9,200	19,000	17,000	9,800	23,000	17,000	21,000	19,000	18,000	9,300	15,000	10,000	15,000	8,900	14,000	23,000	MRC-5	OK when pH <u>></u> 5.5 [b]
Arsenic	7.1	28	11	24	7.5	6.8	8.8	16.0	14.0	6.1	5.1	5.7	3.9	5.4	8.5	28.0	MRC-2	25
Barium	99	110	150	110	600	170	560	130	130	100	130	98	86	90	86	600.0	MRC-5	390
Beryllium	0.57	0.53	0.93	0.58	0.61	0.48	0.62	0.77	0.69	0.73	1.2	0.64	0.65	0.55	0.88	1.2	MRC-10	5.0
Chromium, Total	22	57	46	87	46	43	51	64	56	24	27	29	20	16	35	87	MRC-4	160
Cobalt	7.1	19	17	16	15	12	18	15	15	6.3	11	7.9	5.1	6.5	9.9	19	MRC-2	50
Copper	20	53	44	36	44	28	63	48	43	14	30	23	7.9	11	29	63	MRC-7	180
Lead	82	79	31	23	11	31	31	32	25	15	10	13	6.6	18	33	82	MRC-1	32
Molybdenum	<2.5	<2.4	<2.1	<2.7	<2.4	<2.5	<2.4	<2.3	<2.3	<2.4	<2.2	<2.5	<2.5	<2.4	<2.3	<2.7	MRC-4	6.9
Nickel	19	56	50	200	44	40	60	65	60	23	30	31	14	13	32	200	MRC-4	130
Selenium	<2.5	<2.4	<2.1	<2.7	<2.4	<2.5	<2.4	<2.3	<2.3	<2.4	<2.2	<2.5	<2.5	<2.4	<2.3	<2.7	MRC-4	2.4
Vanadium	30	70	60	30	69	59	64	70	64	29	59	34	30	30	54	70	MRC-2/-8	18
Zinc	160	82	210	56	65	66	110	88	82	64	79	59	32	41	270	270	MRC-14	340
					Hexa	avalent C	hromium	(Method	SW846 7	'199) (mg	/kg)							
Chromium VI	<0.25	<0.25	<0.22	<0.27	<0.24	<0.23	<0.23	<0.23	<0.23	<0.24	<0.22	<0.25	<0.26	<0.25	<0.23	<0.27	MRC-4	10
							Gener	ral Param	eters									
pH	5.9	6.1	6.9	6.9	6.8	7.1	7.2	7.2	6.0	6.5	6.9	7.1	7.3	6.0	5.7	5.	7-7.3	NA

Notes:

Bold indicates detection above laboratory reporting limit.

[a] All ecological screening levels taken from San Francisco Bay Summary of Environmental Screening Levels (ESLs) for Terrestrial Habitat Levels in Significantly Vegetated Area, except aluminum.

[b] As recommended in USEPA's EcoSSL for aluminum.

< = not detected at or above specified laboratory reporting limit

mg/kg = milligrams per kilogram

NA = Not applicable

Table 7Summary of Ecological RisksSpent Catalyst Release from Martinez Refining Company

Ecological Exposure Pathways	Background Contribution Included?	MRC-1	MRC-2	MRC-3	MRC-4	MRC-5	MRC-6	MRC-7	MRC-8	MRC-8 /Dup-1	MRC-9	MRC-10	MRC-11	MRC-12	MRC-13	MRC-14
		н	н	ні	H	н	Н	н	H	н	н	н	н	ні	н	ні
Direct Contact with Soil (Appendix I)	YES	5.8	9.2	6.9	6.0	7.2	5.9	7.9	7.3	6.6	3.3	5.2	3.6	2.7	3.2	6.2
Direct Contact with Soil (Appendix I)	NO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Notes:

all soil concentrations and screening levels in mg/kg

C = cancer based on a Target Risk Level = 1E-06

HI = noncancer Hazard Index = ∑HQ

HQ = noncancer Hazard Quotient

NA = Not applicable

NC = noncancer based on a Target Hazard Quotient = 1.0

Figures

LEGEND

Approximate soil sample location, May 2023

Contra Costa County Hazardous Materials Program

Notes:

Blank box (no text) = incomplete exposure pathway

Appendix A. Laboratory Analytical Report for November 2022 Bulk Data

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2211J04

Report Created for: BAAQMD

375 Beale Street Suite 600 San Francisco, CA 94105

Project Contact:	McKenzie Bell	
Project P.O.: Project:	MRC	Note: CCH bulk dust samples collected in a sample container by BAAQMD. Samples reported in milligrams per kilogram.
Project Received:	11/30/2022	

Analytical Report reviewed & approved for release on 12/01/2022 by:

Jennifer Lagerbom Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: BAAQMD

Project: MRC

WorkOrder: 2211J04

Glossary Abbrev	<u>viation</u>
%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
CPT	Consumer Product Testing not NELAP Accredited
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ERS	External reference sample. Second source calibration verification.
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
LQL	Lowest Quantitation Level
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016.
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting limit is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
TZA	TimeZone Net Adjustment for sample collected outside of MAI's UTC.
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: BAAQMD Project: MRC WorkOrder: 2211J04

Analytical Qualifiers

a7

Reporting limit raised due to limited sample amount.

 Client:
 BAAQMD

 Date Received:
 11/30/2022 14:37

 Date Prepared:
 11/30/2022

 Project:
 MRC

WorkOrder:	2211J04
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
1-1635 Alhambra Community Samp	le 2211J04-001A	Solid	11/26/2022	12:56	ICP-MS5 110SMPL.d	259224
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Antimony	ND		24	1		12/01/2022 10:08
Arsenic	ND		24	1		12/01/2022 10:08
Barium	ND		240	1		12/01/2022 10:08
Beryllium	ND		24	1		12/01/2022 10:08
Cadmium	ND		24	1		12/01/2022 10:08
Chromium	ND		24	1		12/01/2022 10:08
Cobalt	ND		24	1		12/01/2022 10:08
Copper	ND		24	1		12/01/2022 10:08
Lead	ND		24	1		12/01/2022 10:08
Mercury	ND		2.4	1		12/01/2022 10:08
Molybdenum	ND		24	1		12/01/2022 10:08
Nickel	160		24	1		12/01/2022 10:08
Selenium	ND		24	1		12/01/2022 10:08
Silver	ND		24	1		12/01/2022 10:08
Thallium	ND		24	1		12/01/2022 10:08
Vanadium	570		24	1		12/01/2022 10:08
Zinc	ND		240	1		12/01/2022 10:08
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	109		70-130			12/01/2022 10:08
Analyst(s): AL			Analytical Com	<u>iments:</u> a	7	

 Client:
 BAAQMD

 Date Received:
 11/30/2022 14:37

 Date Prepared:
 11/30/2022

 Project:
 MRC

WorkOrder:	2211J04
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID
2- 210 Buckley St Community	Sample 2211J04-002A	Solid	11/26/2022	13:18	ICP-MS5 113SMPL.d	259224
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Antimony	ND		3.4	1		12/01/2022 10:19
Arsenic	ND		3.4	1		12/01/2022 10:19
Barium	86		34	1		12/01/2022 10:19
Beryllium	ND		3.4	1		12/01/2022 10:19
Cadmium	ND		3.4	1		12/01/2022 10:19
Chromium	15		3.4	1		12/01/2022 10:19
Cobalt	6.5		3.4	1		12/01/2022 10:19
Copper	23		3.4	1	i ype text here	12/01/2022 10:19
Lead	12		3.4	1		12/01/2022 10:19
Mercury	ND		0.34	1		12/01/2022 10:19
Molybdenum	ND		3.4	1		12/01/2022 10:19
Nickel	200		3.4	1		12/01/2022 10:19
Selenium	3.8		3.4	1		12/01/2022 10:19
Silver	ND		3.4	1		12/01/2022 10:19
Thallium	ND		3.4	1		12/01/2022 10:19
Vanadium	580		3.4	1		12/01/2022 10:19
Zinc	61		34	1		12/01/2022 10:19
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	106		70-130			12/01/2022 10:19
Analyst(s): AL			Analytical Com	nments:	а7	

 Client:
 BAAQMD

 Date Received:
 11/30/2022 14:37

 Date Prepared:
 11/30/2022

 Project:
 MRC

WorkOrder:	2211J04
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID
^{3- 225 Buckley St} Community Sar	nple 2211J04-003A	Solid	11/26/2022	13:31	ICP-MS5 114SMPL.d	259224
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Antimony	ND		13	1		12/01/2022 10:22
Arsenic	ND		13	1		12/01/2022 10:22
Barium	ND		130	1		12/01/2022 10:22
Beryllium	ND		13	1		12/01/2022 10:22
Cadmium	ND		13	1		12/01/2022 10:22
Chromium	16		13	1		12/01/2022 10:22
Cobalt	ND		13	1		12/01/2022 10:22
Copper	26		13	1		12/01/2022 10:22
Lead	ND		13	1		12/01/2022 10:22
Mercury	ND		1.3	1		12/01/2022 10:22
Molybdenum	ND		13	1		12/01/2022 10:22
Nickel	200		13	1		12/01/2022 10:22
Selenium	ND		13	1		12/01/2022 10:22
Silver	ND		13	1		12/01/2022 10:22
Thallium	ND		13	1		12/01/2022 10:22
Vanadium	610		13	1		12/01/2022 10:22
Zinc	200		130	1		12/01/2022 10:22
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	107		70-130			12/01/2022 10:22
Analyst(s): AL			Analytical Com	<u>ments:</u> a	7	

 Client:
 BAAQMD

 Date Received:
 11/30/2022 14:37

 Date Prepared:
 11/30/2022

 Project:
 MRC

WorkOrder:	2211J04
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID
4- 815 Estudillo StCommunity	Sample ^{2211J04-004A}	Solid	11/26/2022 ⁻	13:07	ICP-MS5 115SMPL.d	259224
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Antimony	ND		340	1		12/01/2022 10:26
Arsenic	ND		340	1		12/01/2022 10:26
Barium	ND		3400	1		12/01/2022 10:26
Beryllium	ND		340	1		12/01/2022 10:26
Cadmium	ND		340	1		12/01/2022 10:26
Chromium	ND		340	1		12/01/2022 10:26
Cobalt	ND		340	1		12/01/2022 10:26
Copper	ND		340	1		12/01/2022 10:26
Lead	ND		340	1		12/01/2022 10:26
Mercury	ND		34	1		12/01/2022 10:26
Molybdenum	ND		340	1		12/01/2022 10:26
Nickel	ND		340	1		12/01/2022 10:26
Selenium	ND		340	1		12/01/2022 10:26
Silver	ND		340	1		12/01/2022 10:26
Thallium	ND		340	1		12/01/2022 10:26
Vanadium	510		340	1		12/01/2022 10:26
Zinc	19,000		3400	1		12/01/2022 10:26
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	105		70-130			12/01/2022 10:26
Analyst(s): AL			Analytical Comr	<u>ments:</u> a	7	

 Client:
 BAAQMD

 Date Received:
 11/30/2022 14:37

 Date Prepared:
 11/30/2022

 Project:
 MRC

WorkOrder:	2211J04
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

Client ID		Lab ID	Matrix	Da	nte Col	lected	Instrument	Batch ID
6- 3487 Pachecco Blv	^{/d} Source Sample	2211J04-006A	Solid	11	/26/202	2 14:15	ICP-MS5 116SMPL.d	259224
Analytes	from refinery	Result			<u>RL</u>	DE		Date Analyzed
Antimony		ND			0.50	1		12/01/2022 10:29
Arsenic		5.8			0.50	1		12/01/2022 10:29
Barium		63			5.0	1		12/01/2022 10:29
Beryllium		0.68			0.50	1		12/01/2022 10:29
Cadmium		ND			0.50	1		12/01/2022 10:29
Chromium		15			0.50	1		12/01/2022 10:29
Cobalt		7.9			0.50	1		12/01/2022 10:29
Copper		29			0.50	1		12/01/2022 10:29
Lead		12			0.50	1		12/01/2022 10:29
Mercury		ND			0.050	1		12/01/2022 10:29
Molybdenum		12			0.50	1		12/01/2022 10:29
Nickel		200			0.50	1		12/01/2022 10:29
Selenium		3.5			0.50	1		12/01/2022 10:29
Silver		ND			0.50	1		12/01/2022 10:29
Thallium		ND			0.50	1		12/01/2022 10:29
Vanadium		510		:	2.5	5		12/01/2022 10:48
Zinc		16		:	5.0	1		12/01/2022 10:29
Surrogates	ļ	REC (%)		<u> </u>	<u>Limits</u>			
Terbium		96			70-130			12/01/2022 10:29
Analyst(s): AL								

Quality Control Report

Client:	BAAQMD
Date Prepared:	11/30/2022
Date Analyzed:	12/01/2022
Instrument:	ICP-MS5
Matrix:	Soil
Project:	MRC

WorkOrder:	2211J04
BatchID:	259224
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/kg
Sample ID:	MB/LCS/LCSD-259224

QC Summary Report for Metals

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Antimony	ND	0.12	0.50	_	-	_
Arsenic	ND	0.11	0.50	-	-	-
Barium	ND	0.71	5.0	-	-	-
Beryllium	ND	0.10	0.50	-	-	-
Cadmium	ND	0.092	0.50	-	-	-
Chromium	ND	0.13	0.50	-	-	-
Cobalt	ND	0.064	0.50	Type	text here	-
Copper	ND	0.13	0.50	-	-	-
Lead	ND	0.065	0.50	-	-	-
Mercury	ND	0.038	0.050	-	-	-
Molybdenum	ND	0.092	0.50	-	-	-
Nickel	ND	0.080	0.50	-	-	-
Selenium	ND	0.21	0.50	-	-	-
Silver	ND	0.057	0.50	-	-	-
Thallium	ND	0.072	0.50	-	-	-
Vanadium	ND	0.11	0.50	-	-	-
Zinc	ND	2.5	5.0	-	-	-
Surrogate Recovery						
Terbium	540			500	108	70-130

Quality Control Report

Client:	BAAQMD
Date Prepared:	11/30/2022
Date Analyzed:	12/01/2022
Instrument:	ICP-MS5
Matrix:	Soil
Project:	MRC

WorkOrder:	2211J04
BatchID:	259224
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/kg
Sample ID:	MB/LCS/LCSD-259224

QC Summary Report for Metals

Analyte	LCS Result	LCSD Result	SPK Val	LC %F	S LCSE REC %REG	LCS/LCSD Limits	RPD	RPD Limit
Antimony	50	51	50	100) 101	75-125	1.27	20
Arsenic	50	51	50	100) 102	75-125	1.93	20
Barium	510	510	500	102	2 101	75-125	0.512	20
Beryllium	51	52	50	102	2 104	75-125	1.21	20
Cadmium	51	52	50	10 [,]	103	75-125	1.92	20
Chromium	48	49	50	96	98	75-125	1.70	20
Cobalt	52	52	50	103	3 104	75-125	1.25	20
Copper	51	52	50	10 [,]	104	75-125	2.70	20
Lead	49	50	50	98	100	75-125	2.04	20
Mercury	1.2	1.3	1.25	100) 102	75-125	2.46	20
Molybdenum	51	52	50	102	2 103	75-125	0.840	20
Nickel	50	51	50	100) 103	75-125	2.53	20
Selenium	49	52	50	97	104	75-125	7.10	20
Silver	50	51	50	10 [,]	102	75-125	0.809	20
Thallium	50	51	50	100) 102	75-125	2.01	20
Vanadium	50	51	50	100) 102	75-125	1.88	20
Zinc	500	510	500	10 ⁻	103	75-125	2.10	20
Surrogate Recovery								
Terbium	530	540	500	100	5 108	70-130	1.58	20

McCampbell Analytical, Inc. 1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Pittsburg, CA 94565-1701 WorkOrder: 2211J04 ClientCode: BAAQ (925) 252-9262 WaterTrax EDF EQuIS Dry-Weight Email □HardCopy ThirdParty □J-flag Detection Summary Excel Report to: Bill to: Requested TAT: 1 day; McKenzie Bell Email: mbell@baagmd.gov Alexandra McMullen cc/3rd Party: BAAQMD Contra Costa-Hazardous Materials Date Received: 11/30/2022 375 Beale Street Suite 600 PO: 4585 Pacheco Blvd., Ste 100 Date Logged: San Francisco, CA 94105 Project: MRC Martinez, CA 94553 11/30/2022 (415) 793-6649 FAX: 415-749-5082 cchazmat@cchealth.org Requested Tests (See legend below) ClientSampID Collection Date Hold 2 4 5 6 7 8 9 10 11 Lab ID Matrix 1 3 12

	-							
2211J04-001	1-1635 Alhambra	Solid	11/26/2022 12:56	А	Α			
2211J04-002	2- 210 Buckley St	Solid	11/26/2022 13:18	А	А			
2211J04-003	3- 225 Buckley St	Solid	11/26/2022 13:31	А	Α			
2211J04-004	4-815 Estudillo St	Solid	11/26/2022 13:07	Α	Α			
2211J04-005	5- 318 Halen St	Solid	11/26/2022 15:07	Α	Α			
2211J04-006	6- 3487 Pachecco Blvd	Solid	11/26/2022 14:15	А	Α			

Test Legend:

1	CAM17MS_TTLC_S
5	
9	

2	PRDisposal Fee
6	
10	

4	
8	
12	

Prepared by: Agustina Venegas

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Page 1 of 1

WORK ORDER SUMMARY

Client Client	Name: BA	AAQMD IcKenzie B	ell			Project: MRC							Work Order: 2211J04 QC Level: LEVEL 2		
Contact's Email: mbell@baaqmd.gov						Comments	S:					Date Lo	gged: 11/30/2022		
			Water	Trax CLIP	EDF	Exce	el 📃 EQu	IS	Email	HardCop	y 🗌 Thir	dPartyJ-flag	g		
LabID	ClientSam	pID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	U** H S	lead Dr pace Wei	y- Collection Da ght & Time	te TAT	Test Due Date	Sediment Hold Sub Content Out		
001A	1-1635 Alhambra	a	Solid	SW6020 (CAM 17)		1	Plastic Baggie, Sm	all		11/26/2022 12:	56 1 day	12/1/2022			
002A	2-210 Buckley S	St	Solid	SW6020 (CAM 17)		1	Plastic Baggie, Sm	all		11/26/2022 13:	18 1 day	12/1/2022			
003A	3-225 Buckley S	St	Solid	SW6020 (CAM 17)		1	Plastic Baggie, Sm	all		11/26/2022 13:	31 1 day	12/1/2022			
004A	4-815 Estudillo S	St	Solid	SW6020 (CAM 17)		1	Plastic Baggie, Sm	all		11/26/2022 13:	07 1 day	12/1/2022			
005A	5-318 Halen St		Solid	SW6020 (CAM 17)		1	Plastic Baggie, Sm	all		11/26/2022 15:	07 1 day	12/1/2022			
006A	6- 3487 Pachecco	o Blvd	Solid	SW6020 (CAM 17)		1	2OZ Black Plastic Jar			11/26/2022 14:	15 1 day	12/1/2022			
						1	Plastic Baggie, Sm	all							

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

General COC **RUSH**

MAI Work Order # 2211 J04

	7						-						2												
	McCAMPBELL ANALYTICAL, INC.					CHAIN OF CUSTODY RECORD																			
	1534 V	Villow Pass I	Rd. Pittsbur	g, Ca.	94565-1701		Turn	Turn Around Time:1 Day Ru			Rush	$ \rangle$	2 Day	Rush		3 Day	Rush		STD		Qu	ote #			
	Teleph	one: (877) 2:	52-9262 / Fa	ax: (92	5) 252-9269		J-Flag	g / MDL		ESL		/	Clean	ıp App	roved		Dry V	Veight		Bott	le Or	der #			
	www.mccampt	ell.com	<u>ma</u>	in@n	nccampbell.	.com	Deliv	ery Fo	rmat:	PDF		Geo	Tracke	r EDF		EDD		Wr	ite On	(DW)		Dete	ct Sun	imary	
	Report To: BAMQMD -MCF	nac Bell	Bill To:	(01)	ouny He	windit								A	nalys	is Re	quest	ed							
	Company: Bay thea Ar (Rud)	IN Ma	nageme	ent	Dism	ct		TBE	thout	4	iout	×	(als			
	Address: mbelle bagm	dm.cr	UVC				Moto	5) M	il Wi	il Wi	With	Gel	418.1	es)	t only			NAs)				met			
	Email: 375 Beak SF	94105	Tele:	419	5-793-	6699	and	/ 801	or O	or O	9071)	ons -) suo	ticid	oclors	Cs)	OCs)	Is / P	*(0;			olved			
	Project Name: MRC		Project #:				iesel,	(8021	- Mot	+ Mot	564/	ocarb Vith S	ocarb	Cl Pes	; Ar	(VO	(SVC	(PAI	: / 602		t	r diss			
	Project Location: Multiple	~~~	PO #				as, D	Gas	15) +	15) +	se (16	Hydr 71) V	Hydr	81 (C	CB's	8260	8270	8310	200.8	20)*	emen	ole fo			
	Sampler Signature:	V.					15) 15	H as	el (8(el (8(Grea	eum] 4 / 90	Gel]	8 / 80	92 P	624 /	625 /	/WI	tals (8 / 60	quire	samj			
	SAMPLE ID	Sam	pling	incrs			tange 21/80	& TP	Dies	Dies el	il &	etrol (166	etrolo llica (5/ 60	8 / 8(4.2 /	5.2 /	270 S	7 Me	(200.	ds Re	filter			
	Location / Field Point	Date	Time	Conta	Matrix	Preservative	il (80)	TEX	PH as lica (PH as lca G	otal C lica C	otal P rease	ith S	PA 50	PA 60	PA 52	PA 52	PA 8	I WY	etals	aylan	ab to talysi			
	Dugo diban bia ita	11/20/22	12.00	#			20	<u>m</u>	Fis	Eis	E is	ĔС	μŅ	E	E	E	E	E	U V	N 7	B	a L	<u> </u>	+	
	DIUSS AMAMOIA MY	11/20/2	12 50	1															^ 						
	DZIURICEVIT	11/20/00	13-15	'			<u> </u>	<u> </u>	<u> </u>										Ŷ	•					
	3 225 PRICELEY ST	1/20/16	13:BI	١															У						
	f EIS Estudillo St	1/20/22	13:07	1															×	?					
×	5318 then st	1/20/22	15:07	1															Х	2					
	63487 Kachero Blvd	11/20/22	14:15	١															×	2					
		1																							
								8	<u>.</u> လ	жs	Z				-									-+	
										A D	ਰੋਂ ਹ												$ \rightarrow $	\rightarrow	
									<u>≣ ö</u>	E E E	0												$ \rightarrow $	-+	
								ا م ا		$P_{\underline{P}}$	<u> </u>														
	MAI clients MUST disclose any dangerous chemical Non-disclosure incurs an immediate \$250 surcharge	s known to be p and the client is	present in their subject to full	submitte legal lia	ed samples in co ability for harm	oncentrations the suffered. Thank	at may c vou for	cause in	ndersta	nding a	offer a	ous futu allowing	re healt g us to y	th enda work sa	ngerme felv.	nt as a	result o	f brief,	gloved,	open a	ir, sam	ple han	dling by	/ MAI st	aff.
	* If metals are requested for water samples and	the water type	e (Matrix) is 1	not spec	ified on the cl	nain of custody	v. MAI	will d	efault t	o meta	ls by H	E200.8								Co	ommen	nts / Ins	tructio	ns	
	Please provide an adequate volume of sample.	f the volume i	is not sufficie	nt for a	MS/MSD a L	.CS/LCSD wil	l be pre	epared	in its p	lac	Finote	ed in th	ne repo	rt.					×	NAL	OW	Marce	Sure	abt	0
	Relinquished By / Company	y Name		D	ate Ti	ime		Recei	ved By		ngany	Name		1	D	ate	Ti	me	4	NOT		J C	am	nle	-
	Mikenne Bell BIT	HQMK	2	11/30	122 14:	37 /	Z	AL	4	7 <u>8</u>	Z	\checkmark	- /	1/3	60/2	622	14	37	av	na	M	9	enny		1
				'			0		5	<u>'</u> 🖬	<u>p</u>						l		Dis	NO	60	-0	anu	elles	2
										ne	š								11-	-30.	-22	4			
	Matrix Code: DW=Drinking Water, G	W=Ground	l Water, W	W=W	aste Water	, SW=Seaw	vater,	S=So	il, SL	=Sta	d ≦ e, A	A=Ai	r, WP	=Wij	pe, O	=Oth	er								
	Preservative Code: 1=4°C 2=HCl	$3=H_2SO_4$	$4=HNO_3$	5=Na	aOH 6=Zr	nOAc/NaOI	H 7=	=Non	e		ю́						Г	emp			°C	Init	ials		

SAMDIE!	OCATION			SAMPLE PURPOSE LAB	1	
Site Name	Manne	Refining	1	Analysis requested		
Address	3185 K	pachero Bi	V01	Billing Code	COLOR DE DE	
City Zip	Martin	e7 94	4553	Reason for sampling		
Source Operation #	COBS	-3 hope	er	Compliance with Reg Rule , Limit specification	Sec	1
Site #	ACOL			Operation under Permit #		
SAMPLE	OLLECTIO	N		Limit specification	e Kerponfe	
Taken by (print name)	Jun	Paris		(
Date & Time	11/28/20	14.15 Not Samp	oles	SAMPLE SUBMISSION TO L	ABORATORY	
Taken from (exact location)	COBS	main hop	ær	Delivered by Milikenzio Bell	11/28/27	13
Air District S	talf present at o	collection YOY		Received by		1
Sample Description	Write	pavaler				
SDS or other	documentatio	n attached SPY		QUALITY CONTROL CHECK	Y N NA]
MFTR Code	1			Received at appropriate temperatur		1
Claid.	sample o	f spent cap	dyrt-	Received in appropriate container		1
Comments	Im ma	in hoper nt	COFE	Sample tabel affixed & complete	0 0 0	1
	CUSTODY	,		Seals affixed & intact	000	1
CHAINO	CUSTODI	To /	Date &	LABORATORY		1
Transfer	· Day	A le.	UIZEDZ	Storage		
1	- Do'	The fle	14:15	Stored Date		
11	MARIS	Juw hr	11 W	& Initials		1
2 90	Ø.		12:27	Analysis		1
Fer Fe	noveBell		15.51	Date		-
2 K	Pe		19:30	Lab		
° - Ke	nte Bell			Comments		
Sign .				Use minklidlyy Historia 24hr format &	w dates and times	
4						
Annes Sill	And States States	have been and the second second				

Relq: Cym Nov, 30th

Page 14 of 16

Client Name & Address:	N. A.	No. of Street,	PO/100#:2721	80		Dat	e:		
BAY AVER	MY Q	willy	Turn Around Time: Same Day / 1Day / 2Day / 3Day / 4Day / 5Day						
Managemen-	PCM: INIOSH 7400A / INIOSH 7400B Rotometer								
375 Beale	A &	= (A 94105	DPLM: Standard / Point Count 400 1000 / CARB 435						
Contact: MCKen Zi	TEM Air: AHERA / Yamate2 / NIOSH 7402 TEM Bulk: Quantitative / Qualitative / Chatfield TEM Water: Potable / Non-Potable / Weight %								
E-mail: mbell @ 1	oaagn	nd.gov	I IAQ Particle Id Particle Identif	ientificat	on (PLM LAB TEM LAB)		PLM Opac Special Pr	ques/Soot oject	
Site:			Metals Analysi	s: Metho	bd:				
Site Location:			Analytes:						
Comments: PIEALE TO	CA+# 1-5	TO Ocompare #	6 and	1	Report Via	: I Fax 1	D E-Mail	D Verbal	
	Date /	all location side	'here'		FOR AIR SAM	APLES ON	ILY	Sample Area /	
Sample ID	Time	in Meuro	escription ECA	Туре	Time On/Off	Avg. LPM	Total Time	Air Volume	
L	12:50	1435 Alhambra	Ave	91 					
2	11/2022	210 BUCKlex S	incet	I A IP IC					
	11/20/22	225 BUCKLES	e Swet	IP IC					
F	11/20/22	BIS ESTUDI	llo st						
5	1507	38 Haven	ST	IP IC					
,	14:15	3487 Pacher	o Blvd	I A I P I C					
R. States				IA IP		-			
				A					
and the second	Service of			IP C					
				I P					
		Charles Market		A					
ampled By: 1-5 MUK	nzie le	fil h: Timpus Pate:	11/20/22	2	Time:				
hipped Via: 🗇 Fed Ex 🛛	IDHL D	UPS US Mail Cou	rier Drop C	Off 🗖	Other:		,		
elinquished By:		Relinquished By:			Relinquished	By: b	Ela.	221	
RECEIVI	CD	Date / Time:			Date / Time:	12:	093	e vou	
Cerved By: NOV 2 8 201	130	Received By:			Received By:				
Mich	1 .	Date / Time:		No.	Date / Time:				

San Francisco Office: 3777 Depot Road, Suite 409, Hayward, California 94545-2761 / Ph: (510)887-8828 * (800)827-3274 / Fax: (510)887-4218 Los Angeles Office: 2959 Pacific Commerce Drive, Rancho Dominguez, California 90221 / Ph: (310)763-2374 * (888)813-9417 / Fax: (310)763-4450 Las Vegas Office: 6765 5. Eastern Avenue, Suite 3, Las Vegas, Nevada 89119 / Ph: (702)784-0040 / Fax: (702)784-0030

3 day per client - apr apr

Sample Receipt Checklist

Client Name: Project:	BAAQMD MRC				Date and Time Received: Date Logged: Received by:	11/30/2022 14:37 11/30/2022 Agustina Venegas
WorkOrder №: Carrier:	2211J04 <u>Client Drop-In</u>	Matrix: <u>Solid</u>			Logged by:	Agustina Venegas
		<u>Chain c</u>	of Custody	<u>/ (COC) Infor</u>	mation	
Chain of custody	present?		Yes	✓	No 🗌	
Chain of custody	signed when relinquis	shed and received?	Yes		No 🗌	
Chain of custody	agrees with sample la	abels?	Yes		No 🗌	
Sample IDs noted	d by Client on COC?		Yes		No 🗌	
Date and Time of	f collection noted by C	Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?		Yes	✓	No 🗌	
COC agrees with	Quote?		Yes		No 🗌	NA 🗹
		Sar	nple Rece	eipt Informati	ion	
Custody seals int	act on shipping conta	iner/cooler?	Yes		No 🗌	NA 🗹
Custody seals int	act on sample bottles	?	Yes		No 🗌	NA 🗹
Shipping containe	er/cooler in good cond	dition?	Yes		No 🗌	
Samples in prope	er containers/bottles?		Yes	✓	No 🗌	
Sample containe	rs intact?		Yes		No 🗌	
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌	
		Sample Preserv	ation and	<u>Hold Time (</u>	HT) Information	
All samples recei	ved within holding tim	ie?	Yes	✓	No 🗌	NA
Samples Receive	ed on Ice?		Yes		No 🗹	
Sample/Temp Bla	ank temperature			Temp:		NA 🖌
ZHS conditional a requirement (VO	analyses: VOA meets Cs, TPHg/BTEX, RSk	zero headspace ()?	Yes		No 🗔	NA 🗹
Sample labels ch	ecked for correct pres	servation?	Yes	✓	No 🗌	
pH acceptable up <2; 522: <4; 218.	oon receipt (Metal: <2 7: >8)?	; Nitrate 353.2/4500NO3:	Yes		No 🗌	NA 🗹
UCMR Samples:				_		_
pH tested and a 537.1: 6 - 8)?	acceptable upon rece	ipt (200.7: ≤2; 533: 6 - 8;	Yes		No	NA 🗹
Free Chlorine to [not applicable	ested and acceptable to 200.7]?	upon receipt (<0.1mg/L)	Yes		No 🗌	NA 🗹

Comments:

Appendix B. Laboratory Analytical Report for November 2022 Dust Data

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2211G11

Report Created for: Contra Costa-Hazardous Materials

4585 Pacheco Blvd., Ste 100 Martinez, CA 94553

Project Contact:	
Project P.O.:	
Project:	

Project Received:

Sara Dwight #023961 MRC

11/28/2022

Note: CCH wipe sample data samples 1,2,6 and 7 are collected from a 12"x12" surface area and reported in micrograms per sample wipe. Others are bulk aproxamate 60"x30".

Analytical Report reviewed & approved for release on 11/29/2022 by:

Jennifer Lagerbom Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: Contra Costa-Hazardous Materials

WorkOrder: 2211G11

Glossary Abbreviation

Project: MRC

%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
CPT	Consumer Product Testing not NELAP Accredited
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ERS	External reference sample. Second source calibration verification.
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
LQL	Lowest Quantitation Level
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016.
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting limit is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
TZA	TimeZone Net Adjustment for sample collected outside of MAI's UTC.
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: Contra Costa-Hazardous Materials Project: MRC WorkOrder: 2211G11

Analytical Qualifiers

a22

Reporting limit raised due to increased prep factor because of physical size of ghost wipe.

Case Narrative

Client: Contra Costa-Hazardous Materials

Project: MRC

Work Order: 2211G11 November 29, 2022

Al2O3 is estimated from the Al data determined by E6020B. It is assumed that all the Aluminum detected is in the form of Al2O3.

 Sample ID
 Al2O3 ug/wipe

 2211G11-001A
 11,112

 2211G11-002A
 24,656

 2211G11-003A
 106,680

 2211G11-004A
 73,144

 2211G11-005A
 2,501

 2211G11-006A
 ND<189</td>

Client:	Contra Costa-Hazardous Materials
Date Received:	11/28/2022 9:55
Date Prepared:	11/28/2022
Project:	MRC

WorkOrder:	2211G11
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	µg/wipe

		Meta	ls			
Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
D-1 Community Sample	2211G11-001A	Wipe	11/26/2022	2 11:55	ICP-MS5 106SMPL.d	259077
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Aluminum	5900		100	1		11/29/2022 09:57
Antimony	1.1		1.0	1		11/29/2022 09:57
Arsenic	ND		1.0	1		11/29/2022 09:57
Barium	39		10	1		11/29/2022 09:57
Beryllium	ND		1.0	1		11/29/2022 09:57
Cadmium	ND		0.50	1		11/29/2022 09:57
Chromium	5.7		1.0	1		11/29/2022 09:57
Cobalt	1.1		1.0	1		11/29/2022 09:57
Copper	14		1.0	1		11/29/2022 09:57
Lead	6.9		1.0	1		11/29/2022 09:57
Mercury	0.10		0.10	1		11/29/2022 09:57
Molybdenum	ND		1.0	1		11/29/2022 09:57
Nickel	17		1.0	1		11/29/2022 09:57
Selenium	ND		1.0	1		11/29/2022 09:57
Silver	ND		1.0	1		11/29/2022 09:57
Thallium	ND		1.0	1		11/29/2022 09:57
Vanadium	52		1.0	1		11/29/2022 09:57
Zinc	130		10	1		11/29/2022 09:57
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	104		70-130			11/29/2022 09:57
<u>Analyst(s):</u> WV			Analytical Con	nments: a2	22	

Client:	Contra Costa-Hazardous Materials
Date Received:	11/28/2022 9:55
Date Prepared:	11/28/2022
Project:	MRC

WorkOrder:	2211G11
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	µg/wipe

			Meta	als			
Clien	t ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
D-2	Community Sample	2211G11-002A	Wipe	11/26/2022	12:00	ICP-MS4 156SMPL.d	259077
Analyt	<u>es</u>	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Alumi	inum	13,000		500	5		11/29/2022 13:33
Antim	iony	1.6		1.0	1		11/29/2022 10:01
Arsen	lic	1.1		1.0	1		11/29/2022 10:01
Bariu	m	61		10	1		11/29/2022 10:01
Beryll	ium	ND		1.0	1		11/29/2022 10:01
Cadm	nium	ND		0.50	1		11/29/2022 10:01
Chror	nium	9.5		1.0	1		11/29/2022 10:01
Coba	lt	2.4		1.0	1		11/29/2022 10:01
Copp	er	24		1.0	1		11/29/2022 10:01
Lead		12		1.0	1		11/29/2022 10:01
Mercu	ıry	ND		0.10	1		11/29/2022 10:01
Molyb	odenum	2.0		1.0	1		11/29/2022 10:01
Nicke	1	40		1.0	1		11/29/2022 10:01
Selen	ium	ND		1.0	1		11/29/2022 10:01
Silver		ND		1.0	1		11/29/2022 10:01
Thalli	um	ND		1.0	1		11/29/2022 10:01
Vana	dium	130		1.0	1		11/29/2022 10:01
Zinc		180		10	1		11/29/2022 10:01
<u>Surrog</u>	<u>ates</u>	<u>REC (%)</u>		<u>Limits</u>			
Terbi	um	101		70-130			11/29/2022 10:01
Analys	s <u>t(s):</u> WV			Analytical Com	i <u>ments:</u> a2	22	

Client:	Contra Costa-Hazardous Materials
Date Received:	11/28/2022 9:55
Date Prepared:	11/28/2022
Project:	MRC

WorkOrder:	2211G11
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	µg/wipe

		Meta	als			
Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
D-4 Community Sample	2211G11-003A	Wipe	11/26/2022	12:34	ICP-MS4 157SMPL.d	259077
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Aluminum	56,000		2000	20		11/29/2022 13:37
Antimony	2.8		1.0	1		11/29/2022 10:04
Arsenic	2.7		1.0	1		11/29/2022 10:04
Barium	140		10	1		11/29/2022 10:04
Beryllium	ND		1.0	1		11/29/2022 10:04
Cadmium	ND		0.50	1		11/29/2022 10:04
Chromium	27		1.0	1		11/29/2022 10:04
Cobalt	8.5		1.0	1		11/29/2022 10:04
Copper	55		1.0	1		11/29/2022 10:04
Lead	36		1.0	1		11/29/2022 10:04
Mercury	0.13		0.10	1		11/29/2022 10:04
Molybdenum	5.2		1.0	1		11/29/2022 10:04
Nickel	160		1.0	1		11/29/2022 10:04
Selenium	4.2		1.0	1		11/29/2022 10:04
Silver	ND		1.0	1		11/29/2022 10:04
Thallium	ND		1.0	1		11/29/2022 10:04
Vanadium	540		1.0	1		11/29/2022 10:04
Zinc	370		10	1		11/29/2022 10:04
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Terbium	94		70-130			11/29/2022 10:04
Analyst(s): WV			Analytical Com	<u>iments:</u> a2	22	

Client:	Contra Costa-Hazardous Materials
Date Received:	11/28/2022 9:55
Date Prepared:	11/28/2022
Project:	MRC

WorkOrder:	2211G11
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	µg/wipe

		Meta	als			
Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
D-5 Community Sa	ample 2211G11-004A	Wipe	11/26/2022	12:36	ICP-MS4 158SMPL.d	259077
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Aluminum	39,000		2000	20		11/29/2022 13:41
Antimony	1.7		1.0	1		11/29/2022 10:08
Arsenic	1.8		1.0	1		11/29/2022 10:08
Barium	96		10	1		11/29/2022 10:08
Beryllium	ND		1.0	1		11/29/2022 10:08
Cadmium	ND		0.50	1		11/29/2022 10:08
Chromium	17		1.0	1		11/29/2022 10:08
Cobalt	5.4		1.0	1		11/29/2022 10:08
Copper	37		1.0	1		11/29/2022 10:08
Lead	21		1.0	1		11/29/2022 10:08
Mercury	ND		0.10	1		11/29/2022 10:08
Molybdenum	3.6		1.0	1		11/29/2022 10:08
Nickel	110		1.0	1		11/29/2022 10:08
Selenium	3.0		1.0	1		11/29/2022 10:08
Silver	ND		1.0	1		11/29/2022 10:08
Thallium	ND		1.0	1		11/29/2022 10:08
Vanadium	380		1.0	1		11/29/2022 10:08
Zinc	240		10	1		11/29/2022 10:08
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	97		70-130			11/29/2022 10:08
Analyst(s): WV			Analytical Com	<u>nments:</u> a2	22	

Client:	Contra Costa-Hazardous Materials
Date Received:	11/28/2022 9:55
Date Prepared:	11/28/2022
Project:	MRC

WorkOrder:	2211G11
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	µg/wipe

		Meta	ıls			
Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID
D-6 Background sample	2211G11-005A	Wipe	11/28/2022	2 08:40	ICP-MS5 110SMPL.d	259077
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aluminum	1300		100	1		11/29/2022 10:11
Antimony	ND		1.0	1		11/29/2022 10:11
Arsenic	ND		1.0	1		11/29/2022 10:11
Barium	23		10	1		11/29/2022 10:11
Beryllium	ND		1.0	1		11/29/2022 10:11
Cadmium	ND		0.50	1		11/29/2022 10:11
Chromium	3.8		1.0	1		11/29/2022 10:11
Cobalt	1.2		1.0	1		11/29/2022 10:11
Copper	11		1.0	1		11/29/2022 10:11
Lead	3.3		1.0	1		11/29/2022 10:11
Mercury	ND		0.10	1		11/29/2022 10:11
Molybdenum	ND		1.0	1		11/29/2022 10:11
Nickel	5.9		1.0	1		11/29/2022 10:11
Selenium	ND		1.0	1		11/29/2022 10:11
Silver	ND		1.0	1		11/29/2022 10:11
Thallium	ND		1.0	1		11/29/2022 10:11
Vanadium	5.8		1.0	1		11/29/2022 10:11
Zinc	290		10	1		11/29/2022 10:11
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	101		70-130			11/29/2022 10:11
Analyst(s): WV			Analytical Con	<u>nments:</u> a2	22	

Client:	Contra Costa-Hazardous Materials
Date Received:	11/28/2022 9:55
Date Prepared:	11/28/2022
Project:	MRC

WorkOrder:	2211G11
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	µg/wipe

		Meta	ls			
Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
D-7 Blank	2211G11-006A	Wipe	11/28/2022	2 08:45	ICP-MS5 113SMPL.d	259077
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Aluminum	ND		100	1		11/29/2022 10:22
Antimony	ND		1.0	1		11/29/2022 10:22
Arsenic	ND		1.0	1		11/29/2022 10:22
Barium	ND		10	1		11/29/2022 10:22
Beryllium	ND		1.0	1		11/29/2022 10:22
Cadmium	ND		0.50	1		11/29/2022 10:22
Chromium	ND		1.0	1		11/29/2022 10:22
Cobalt	ND		1.0	1		11/29/2022 10:22
Copper	ND		1.0	1		11/29/2022 10:22
Lead	ND		1.0	1		11/29/2022 10:22
Mercury	ND		0.10	1		11/29/2022 10:22
Molybdenum	ND		1.0	1		11/29/2022 10:22
Nickel	ND		1.0	1		11/29/2022 10:22
Selenium	ND		1.0	1		11/29/2022 10:22
Silver	ND		1.0	1		11/29/2022 10:22
Thallium	ND		1.0	1		11/29/2022 10:22
Vanadium	ND		1.0	1		11/29/2022 10:22
Zinc	52		10	1		11/29/2022 10:22
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	105		70-130			11/29/2022 10:22
<u>Analyst(s):</u> WV			Analytical Con	<u>nments:</u> a2	22	

Quality Control Report

Client:	Contra Costa-Hazardous Materials	WorkOrder:	2211G11
Date Prepared:	11/28/2022	BatchID:	259077
Date Analyzed:	11/29/2022	Extraction Method:	SW3050B
Instrument:	ICP-MS5	Analytical Method:	SW6020
Matrix:	Wipe	Unit:	µg/wipe
Project:	MRC	Sample ID:	MB-259077

QC Summary Report for Metals

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Aluminum	ND	100	100	-	-	-
Antimony	ND	1.0	1.0	-	-	-
Arsenic	ND	1.0	1.0	-	-	-
Barium	ND	10	10	-	-	-
Beryllium	ND	1.0	1.0	-	-	-
Cadmium	ND	0.50	0.50	-	-	-
Chromium	ND	1.0	1.0	-	-	-
Cobalt	ND	1.0	1.0	-	-	-
Copper	ND	1.0	1.0	-	-	-
Lead	ND	1.0	1.0	-	-	-
Mercury	ND	0.10	0.10	-	-	-
Molybdenum	ND	1.0	1.0	-	-	-
Nickel	ND	1.0	1.0	-	-	-
Selenium	ND	1.0	1.0	-	-	-
Silver	ND	1.0	1.0	-	-	-
Thallium	ND	1.0	1.0	-	-	-
Vanadium	ND	1.0	1.0	-	-	-
Zinc	ND	10	10	-	-	-
Surrogate Recovery						
Terbium	1100			1000	107	70-130

McCamp 1534 W Pittsburg (925) 25	bbell Analytical, illow Pass Rd g, CA 94565-1701 52-9262	INC.	x CLIP	EDF	CH Worl	kOrde EQuIS	I-OF er: 2211 Dr	-CU IG11 y-Weight	ST(DY ClientC imail	RE code:	COI CCHN]HardC	RD ⁄I Copy	ThirdP	Page Party	1 of ∏J-fl	1 ag
Report to: Sara Dwight Contra Costa 4585 Pachec Martinez, CA (925) 335-3200	-Hazardous Materials o Blvd., Ste 100 94553 o FAX: (925) 646-2073	Email: cc/3rd Party PO: Project:	nsd.cccounty.us	Bill to: Alexandra McMullen Contra Costa-Hazardous Materials 4585 Pacheco Blvd., Ste 100 Martinez, CA 94553 cchazmat@cchealth.org							Requested TAT: Date Received: Date Logged:			1 day; 11/28/2022 11/28/2022			
Lab ID	ClientSampI	0	Matrix	Collection Date	Hold	1	2	3	Req 4	uested ⁻ 5	Tests (6	See leg 7	gend be 8	elow) 9	10	11	12
2211G11-001	D-1		Wipe	11/26/2022 11:55		А	А	А									
2211G11-002	D-2		Wipe	11/26/2022 12:00		А	А	А									
2211G11-003	D-4		Wipe	11/26/2022 12:34		А	Α	Α								-	

11/26/2022 12:36

11/28/2022 08:40

11/28/2022 08:45

Α

А

А

А

А

А

Α

А

А

Test Legend:

2211G11-004

2211G11-005

2211G11-006

1	METALSMS_TTLC_WI
5	
9	

D-5

D-6

D-7 Blank

2	PRDisposal Fee	3
6		7
10		1

Wipe

Wipe

Wipe

3	PRMISC
7	
11	

4	
8	
12	

Prepared by: Agustina Venegas

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

WORK ORDER SUMMARY

Client Client	Name: Contact: S	CONTRA C Sara Dwight	COSTA-HA	AZARDOUS MATERIALS	Project:	MRC						Work O QC I	rder: 221 Level: LEV	IG11 /EL 2	
Conta	ct's Email: s	sara.dwight@	@hsd.ccco	ounty.us	Comment	s:						Date Lo	gged: 11/2	8/202	2
			Water [_]		DF Exc	cel 📃 EQu	IS	√ En	nail	HardCopy	Thirc	Party J-flag	1		
LabID	ClientSa	mpID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	U**	⁴ Head Space	Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold	Sub Out
001A	D-1		Wipe	SW6020 (Metals) <aluminum, Antimony, Arsenic, Barium, Berylli Cadmium, Chromium, Cobalt, Copp Lead, Mercury, Molybdenum, Nicke Selenium, Silver, Thallium, Vanadiu Zinc></aluminum, 	1 im, er, l, m,	50mL Digestion Tube				11/26/2022 11:55	1 day	11/29/2022			
002A	D-2		Wipe	SW6020 (Metals) <aluminum, Antimony, Arsenic, Barium, Berylli Cadmium, Chromium, Cobalt, Copp Lead, Mercury, Molybdenum, Nicke Selenium, Silver, Thallium, Vanadiu Zinc></aluminum, 	1 im, er, l, m,	50mL Digestion Tube				11/26/2022 12:00	1 day	11/29/2022			
003A	D-4		Wipe	SW6020 (Metals) <aluminum, Antimony, Arsenic, Barium, Berylli Cadmium, Chromium, Cobalt, Copp Lead, Mercury, Molybdenum, Nicke Selenium, Silver, Thallium, Vanadiu Zinc></aluminum, 	1 um, er, l, m,	50mL Digestion Tube				11/26/2022 12:34	1 day	11/29/2022			

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

"When Quality Counts"

WORK ORDER SUMMARY

Client Name: Client Contact:	CONTRA (Sara Dwigh	COSTA-H. nt	AZARDOUS MATERIALS	Project:	MRC						Work O QC I	rder: 221 Level: LEV	IG11 /EL 2	
Contact's Emai	l: sara.dwight	@hsd.ccco	bunty.us	Comments	:						Date Lo	gged: 11/2	8/202	2
		Water	Trax CLIP EDF	Exce	el EQul	S	√ Err	nail	HardCopy	Thirc	IPartyJ-flag	I		
LabID Client	SampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	U**	⁴ Head Space	Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold	Sub Out
004A D-5		Wipe	SW6020 (Metals) <aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Lead, Mercury, Molybdenum, Nickel, Selenium, Silver, Thallium, Vanadium, Zinc></aluminum, 	1	50mL Digestion Tube				11/26/2022 12:36	1 day	11/29/2022			
005A D-6		Wipe	SW6020 (Metals) <aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Lead, Mercury, Molybdenum, Nickel, Selenium, Silver, Thallium, Vanadium, Zinc></aluminum, 	1	50mL Digestion Tube				11/28/2022 8:40	1 day	11/29/2022			
006A D-7 Blank		Wipe	SW6020 (Metals) <aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Lead, Mercury, Molybdenum, Nickel, Selenium, Silver, Thallium, Vanadium, Zinc></aluminum, 	1	50mL Digestion Tube				11/28/2022 8:45	1 day	11/29/2022			

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

es ?			1	ï																			
General COC	Η	4				6		(5			MAI	Wor	k Orc	ler #	2	22	-11	Ð	,			
McCAMP	BELL	ANAI	Y	FICAL.	INC.	1	2,15	ch			C	HAI	N OI	F CU	STO	DDY	REC	COR	D				
1534 W	Villow Pass F	d. Pittsburg	g, Ca.	94565-1701		Turn	Furn Around Time: Day Rush 2 Day Rush 3 Day Rush STD Quote #																
Telepho	one: (877) 25	2-9262 / Fa	ax: (92	.5) 252-9269			J-Flag	/ MDL	/	ESL		(Cleanu	p App	roved				Bott	le Ord	ler #	5	
www.mccampb	ell.com	<u>ma</u>	in@n	nccampbell.	com	Deliv	ery Fo	ormat:	PDF		GeoT	racker	EDF		EDD		Wr	ite On	(DW)		E	QuIS	
Report To: Sava Dwisht		Bill To:	F	0048.	55								An	alysi	s Ree	quest	ed	_				_	
Company: Contra Costa Conty	Hazaro	las 1	Nate	inals Pi	osrams	TBE		H	hout	æ	(1		x	1		(tals		×	
Email: Sara duight@pc	healt	nors				15) M	12	N II) <u>Wit</u>	- Oil	(418.	les)	rs onl		-	PNAs				ed me	-	5~	1.
Alt Email:	t Email: Tele: 925 464-8477								9071	bons	bons	sticic	rocloi	Cs)	OCs	Hs /	120)*			ssolve	lid	F	
Project Name: MRC	DU	Project #:				(802	+ M0	+ M0	664 /	With	rocar	CI Pe	s ; AI	0 (VC	0 (SV	VA) (8 / 60		nts	or dis	0	+	
Project Location: 4585 Padveco		s Gas	015) el	015)	ase (1	Hyd (171)	Hyd	180	PCB'	/ 826	/ 827	/ 831	(200.	(020)	reme	aple f	5	4					
Sampler Signature:			5	1		PH a	sel (8 ica G	sel (8	Gre	leum 54 / 9	Gel	08 / 8	8082	/ 624	/ 625	MIS	etals	0.8/6	tequi	r san	ine	11	
SAMPLE ID	Sam	pling	tainer	Matrix	Preservative	& T	ut Sil	Gel	Oil &	Petro e (16	Petro Silica	9 /505	808/8	524.2	525.2	8270	17 M	s (20)	H spu	o filte sis	0	Z	
Location / Field Point	Date	Time	#Con	Maura	Treservative	STEX	Vitho	TPH a	Fotal Silica	Fotal	Fotal With	EPA :	EPA (EPA :	EPA :	EPA	CAM	Metal	Bayla	Lab t analy	IH'	E C	
D-1	11/76/22	1155	1	Wine					- 01				_	-		117		9×			X	X	
D-7	1.17/177	1200	1	11:00	-					2							V			7	X	X	-
-D-2-(2 HT)	1,0000	1723	X	Tito	~		+	1	1	+											9		
D U	theoper	12.24	1	Valia			+	1		-						-	V				1×	RI	_
0-9	11/26/22	1237		Wipe			-	-	1.2.1.	+							X					31	
1)-5	11/26/22	1236	1	Wipe	1.1		-	-	10								X			-		<u>X</u>	
D-6 Backgord 6153	11/28/22	8:40	1	wipe	-		1										X				×	X	
D-7 BLANK	11/28/22	5:45)	Wipe					New York								X					W.	2
									A														
V																							
1945									1														
MAI clients MUST disclose any dangerous chemica	als known to be p	present in their	submit	ted samples in co	oncentrations that	t may	cause i	immedia	te harn	1 or seri	ous futu	re healt	th enda	ngerme	nt as a	result o	of brief,	, gloved	l, open :	air, sam	ple hand	lling by l	AAI staff.
Non-disclosure incurs an immediate \$250 surcharge	and the client is	s subject to ful	l legal l	iability for harm	suffered. Thank	you fo	or your	underst	anding	and for	allowing	g us to v	work sa	fely.									
* If metals are requested for water samples and	the water type	e (Matrix) is	not spe	cified on the cl	nain of custody	, MA	I will c	default	to met	als by l	E200.8								C	ommen	ts / Ins	truction	5
Please provide an adequate volume of sample.	If the volume	is not sufficie	ent for	a MS/MSD a L	CS/LCSD wil	be pi	repared	d in its	place a	ind not	ed in the	e repo	rt.	D	ata	Т	ima	•					
Relinguished By/Compar	ny Name		14/2	Claa IUm		•	Rece	Keyb	y/ C0.	mpany								1					
Store IIII			11/2	6/0CF10		ure	Laca	100	10	zh	No the	2/	il	hat	71:77	M	015	<					
eanna pura			nia	\$192 012	36	4	-9	P	Ŧ	///	11/	Y	6 11 J	HA	4000	-0.	1	T					
Matrix Code: DW=Drinking Water, GW=Ground Water, WW=Waste Water, SW=Seawater, S=Soil, SL=Sludge, A=Air, WP=Wipe, O=Other																							
Preservative Code: $1=4^{\circ}C$ $2=HCl$ $3=H_2SO_4$ $4=HNO_3$ $5=NaOH$ $6=ZnOAc/NaOH$ $7=None$ Temp 10 , 0 °C Initials																							
* CAMIT + AL SET	* CAMIT + AL SET UP TO REPORT AS ALIANS PERTI. ILIE																						
11/28/202 chal	0					10		0.										\mathcal{O}		-	Р	age	_ of
IL DAILOPPE UN																							Page 15

Page 15 of 16

Sample Receipt Checklist

Client Name: Project:	Contra Costa-Hazai MRC	rdous Materials			Date and Time Received: Date Logged: Received by:	11/28/2022 09:55 11/28/2022 Agustina Venegas
WorkOrder №: Carrier:	2211G11 <u>Client Drop-In</u>	Matrix: <u>Wipe</u>			Logged by:	Agustina Venegas
		<u>Chain c</u>	of Custody	v (COC) Info	rmation	
Chain of custody	present?		Yes		No 🗌	
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample la	abels?	Yes		No 🗌	
Sample IDs noted	d by Client on COC?		Yes		No 🗌	
Date and Time of	f collection noted by C	Client on COC?	Yes		No 🗌	
Sampler's name	noted on COC?		Yes	✓	No 🗌	
COC agrees with	Quote?		Yes		No 🗌	NA 🗹
		Sar	nple Rece	eipt Informat	tion	
Custody seals int	act on shipping conta	ainer/cooler?	Yes		No 🗌	NA 🗹
Custody seals int	act on sample bottles	\$?	Yes		No 🗌	NA 🗹
Shipping containe	er/cooler in good cond	dition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?		Yes		No 🗌	
Sample container	rs intact?		Yes		No 🗌	
Sufficient sample	volume for indicated	test?	Yes		No 🗌	
		Sample Preserv	<u>ation and</u>	Hold Time	(HT) Information	
All samples recei	ved within holding tim	ne?	Yes	\checkmark	No 🗌	NA
Samples Receive	ed on Ice?		Yes	✓	No 🗌	
		(Ice T	ype: BLU	JE ICE)		
Sample/Temp Bla	ank temperature			Temp: 10	0°C	
ZHS conditional a requirement (VO	analyses: VOA meets Cs, TPHg/BTEX, RSk	zero headspace <)?	Yes		No 🗀	NA 🗹
Sample labels ch	ecked for correct pres	servation?	Yes	✓	No 🗌	
pH acceptable up <2; 522: <4; 218.	oon receipt (Metal: <2 7: >8)?	; Nitrate 353.2/4500NO3:	Yes		No 🗌	NA 🗹
UCMR Samples: pH tested and a 537.1: 6 - 8)?	acceptable upon rece	ipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗌	NA 🗹
Free Chlorine to [not applicable	ested and acceptable to 200.7]?	e upon receipt (<0.1mg/L)	Yes		No 🗌	NA 🗹

Comments:

Appendix C. Soil Sampling Standard Operating Procedure and May 2023 Field Notes

Title: Soil Sampling			Procedure Number: ECR 003
			Revision Number: 04
			Effective Date: February 2022
Au	thorization Signa	itures	
CME. WMH	10	2-9-6	
Technical Reviewer	Date SOP We	ork Group Co-Lead	Date
Chelsea Wenhardt 2/2	1/2022 Ryan Jo	rrey	2/21/2022

This document is proprietary property of TRC. It is to be used only by the person(s) to whom it has been provided and solely for the express purpose intended. Any reproduction or distribution, for purposes other than the intended, is forbidden without the express written consent of TRC

TABLE OF CONTENTS

10	INTRODUCTION	Page No. 5
1.0	2 Scope and Applicability	5
1	3 Summary of Method	5
1.4	4 Equipment	5
1	5 Definitions	6
1.	6 Health & Safety Considerations	7
1.	7 Cautions and Potential Problems	7
1.0	8 Personnel Qualifications	8
2.0	PROCEDURES	8
2	2 Pre-Sampling Activities	8
2	3 General Soil Sampling Procedures	9
3.0	SURFACE SOIL SAMPLING METHODS	11
4.0	SUBSURFACE SOIL SAMPLING METHODS	
4	2 Hand Auger Sampling Methods	
4	3 Direct-Push Sampling Methods	13
4.4	4 Split-spoon Sampling Methods	
4	5 Shelby Tube/Thin-walled Sampling Methods	16
4.	6 Sonic Drilling Sampling Methods	16
4.	7 Excavator Sampling Methods	17
4.0	8 Stockpile Soil Sampling Methods	
5.0	Post-sampling Activities	
6.0	INVESTIGATION-DERIVED WASTE DISPOSAL	
7.0	QUALITY ASSURANCE/QUALITY CONTROL	
7	2 Duplicate Soil Sample Collection	
8.0	DATA MANAGEMENT AND RECORDS MANAGEMENT	
9.0	SUSTAINABLE RECOMMENDATIONS	21
10.0	References	21
11.0	SOP REVISION HISTORY	
	Hand Augering	41
	Direct Push	41

Split Spoon	42
Shelby Tubes	42
Sonic Drilling	42
Excavator	43

LIST OF ATTACHMENTS

Attachment A	Procedure for Collection of Samples for VOCs, VPH, or GRO		
	(SW-846 Method 5035A)		
Attachment B	Shipping Methanol-preserved Samples		
Attachment C	SOP Fact Sheet		
Attachment D	SOP Modifications for PFAS		
Attachment E	Explanation of Subsurface Sampling Technologies		

1.0 INTRODUCTION

1.2 Scope and Applicability

This Standard Operating Procedure (SOP) was prepared to direct TRC personnel in the logistics, collection techniques, and documentation requirements for collecting representative soil samples for chemical analysis. These are standard (i.e., typically applicable) operating procedures that may be changed, as required, depending on site conditions, equipment limitations, or limitations imposed by the procedure. In addition, other state or federal requirements may be above and beyond the scope of this SOP and will be followed, if applicable. In all instances, the actual procedures used should be documented and described in the field notes (see <u>ECR SOP-001</u>). Portions of this SOP may be applicable to soil sample collection for geotechnical analysis. However, specific instructions for collection of geotechnical samples are not provided; these samples should be collected in accordance with ASTM methods or other applicable standards.

1.3 Summary of Method

The objective of soil sampling is to obtain a representative sample of soil for laboratory analysis of constituents of interest at a given site. This objective requires that the sample be of sufficient quantity and quality for analysis by the selected analytical method. For specialized sampling programs involving per- and polyfluorinated alkyl substances (PFAS), refer to Attachment D for further details. Soil samples may be collected using a variety of methods and equipment depending on the depth of the desired sample, the type of sample required (disturbed vs. undisturbed), and the soil type. Near-surface soils may be sampled using a spade, trowel, and/or scoop. Sampling at greater depths typically is performed using a hand auger, continuous flight auger, a split-spoon, direct-push methods (i.e., Geoprobe®), sonic drilling, a backhoe, or an excavator. The following reference may be used as a guide to aid in selecting an appropriate method or sampling device for the collection of subsurface soil samples with a drill rig: ASTM D6169–98 *Standard Guide for Selection of Soil and Rock Sampling Devices Used with Drill Rigs for Environmental Investigation*.

1.4 Equipment

The following equipment may be utilized when collecting soil samples. Project-specific conditions or laboratory requirements may warrant the addition or deletion of items from this list.

- Appropriate level of personal protective equipment (PPE), as specified in the site-specific Health and Safety Plan (HASP).
- Sample containers: The proper containers should be determined in conjunction with the analytical laboratory in the planning stages of the project, and will depend on the analytical program, laboratory SOPs, and regulatory requirements.

For non-volatile organic compound (VOC) parameters, glass containers with Teflon[®]-lined caps are typically utilized. Typical containers used for VOC parameters are provided in Attachment A. Brass liners, steel liners, or soil core acetate liners with Teflon[®] tape and plastic end caps may also be used.

• Stainless steel mixing bowl or new aluminum pie pan.

- Stainless steel spoon or spatula or sterile individually wrapped single use scoop.
- Plastic bowl or plastic resealable bag for inorganics.
- Hand auger, mud auger, sand auger, bucket auger, and/or T-handle.
- Post hole auger.
- Extension rods.
- Stainless steel trowel.
- Shovel.
- Applicable field screening equipment with calibration solution/gas [i.e., pH meter, photoionization detector (PID), flame ionization detector (FID), etc.].
- Tape measure or folding ruler.
- Wooden stakes and spray paint, plastic flagging (highly visible), or steel pin flags.
- Field book/field notes and/or boring log.
- Sample container labels.
- Chain-of-custody (COC) forms (TRC or laboratory, as appropriate).
 - Custody seals for sample coolers.
 - Tape to secure sample coolers and sample container labels (if necessary).
- Camera.
- Maps/site plan.
- Survey equipment, global positioning system (GPS), or other means of measuring sample locations.
- Indelible marking pens or markers.
- Organic absorbent material (e.g., Slickwick, ground corn cob, sawdust).
- Sample coolers.
- Bubble wrap.
- Ice (for sample storage/preservation).
- Zip-loc[®] plastic bags (for ice and COCs).
- Equipment decontamination supplies (see ECR SOP-010).

1.5 Definitions

Composite sample	Composed of two or more grab samples collected over a period of time or space during a single sampling event and mixed together.
En-Core [®] sampler	A disposable volumetric sampling device with an airtight sealing cap.
Grah samnle	Individual discrete sample collected at a particular time

High-level VOC analysis	VOC soil analysis that yields high reporting limits (approximately 50-200 μ g/kg, depending on the laboratory). Samples are typically preserved in methanol and cooled to 4°C. High-level VOC analyses are used for samples that are expected to contain elevated concentrations of VOCs (>200 μ g/kg).
Low-level VOC analysis	VOC soil analysis that yields low reporting limits (approximately 5 μ g/kg, depending on the laboratory). Samples are typically preserved in water, cooled to 4°C, and can be frozen within 48 hours of collection. Low-level VOC analyses are used for samples that are expected to contain lower concentrations of VOCs ($\leq 200 \mu$ g/kg).
Terra Core [™] sampler	A disposable volumetric sampling device used to transfer soil samples to the appropriate sample containers.

1.6 Health & Safety Considerations

TRC personnel will be on site when implementing this SOP. Therefore, TRC personnel shall follow the site-specific HASP. TRC personnel will use the appropriate level of PPE, as defined in the HASP.

Soil samples containing chemical contaminants may be handled during implementation of this SOP. Additionally, sample preservatives including caustics and/or acids may be considered hazardous materials and TRC employees will appropriately handle and store them at all times. The HASP will address chemicals that pose specific toxicity or safety concerns and TRC employees will follow relevant requirements, as appropriate. Hazardous substances may be incompatible or may cause dangerous chemical reactions, including the production of heat, violent reactivity, or production of toxic vapors or other byproducts. Hazardous substances may be incompatible with clothing or equipment; some substances can permeate or degrade protective clothing or equipment. Also, hazardous substances may pose a direct health hazard to workers through inhalation or skin contact or if exposed to heat/flame resulting in combustion. Safety data sheets (SDS) for chemicals handled by TRC should be maintained in the field.

1.7 Cautions and Potential Problems

- <u>Cross contamination</u>: Cross contamination problems can be eliminated or minimized through the use of dedicated sampling equipment. If this is not possible or practical, then decontamination of sampling equipment is necessary.
- <u>Improper sample collection</u>: Improper sample collection can involve using contaminated equipment, disturbance of the matrix resulting in compaction of the sample, or inadequate homogenization of the samples where required, resulting in variable, non-representative results.
- Special considerations for the different soil sampling techniques are provided below in the applicable sections. Cautions and potential problems associated with soil sampling for VOCs are provided in Attachment A.

• Special care should be taken when sampling for PFAS. Please refer to Attachment D for details.

1.8 Personnel Qualifications

Since this SOP will be implemented at sites or in work areas that entail potential exposure to toxic chemicals or hazardous environments, TRC personnel must be adequately trained. Project and client-specific training requirements for samplers and other personnel on site should be developed in project planning documents, such as the sampling plan or project work plan. These requirements may include:

- OSHA 40-hour Health and Safety Training for Hazardous Waste Operations and Emergency Response (HAZWOPER) workers
- 8-hour annual HAZWOPER refresher training

2.0 **PROCEDURES**

Always review the site-specific work plan and/or scope of work for any site-specific sampling procedures.

2.2 Pre-Sampling Activities

Pre-sampling activities that the sampling team should consider include the following:

- reviewing the work plan approved by the client and/or regulatory agency;
- developing a strategy to implement the work plan
- selecting a laboratory; and
- determining laboratory-specific procedures related to bottle orders, holding times, work orders, methods of analysis, COC procedures, data deliverables, schedule, and cost.

Additional activities include determining shipping logistics, utility clearance, and handling of investigation-derived waste (IDW) disposal. Pre-labeling bottles can help to reduce sampling and labeling errors.

The following steps should also be employed:

- 1. Determine the extent of the sampling effort, the sampling methods to be employed, and the types and amounts of equipment and supplies required.
- 2. Obtain necessary sampling and monitoring equipment.
- 3. Decontaminate or clean equipment and ensure that it is in working order.
- 4. Prepare schedules and coordinate with staff, client, and regulatory agencies, if appropriate.
- 5. Perform a general site survey prior to site entry in accordance with the site-specific HASP.

6. Use stakes, flagging, or paint, to identify and mark all sampling locations. Specific site factors, including extent and nature of contaminants, should be considered when selecting sample locations. If required, the proposed locations may be adjusted based on site access, property boundaries, and surface obstructions.

NOTE: If spray paint is used to mark stakes, the spray paint should be carefully isolated from the space used to hold sample bottles, sampling equipment, etc.

7. Prior to any subsurface soil sampling, especially that completed with a drill rig or backhoe, it is important to ensure that all sampling locations are clear of overhead and buried utilities by conducting a utility survey/markout. Locations on private properties should also be reviewed with the owner prior to sampling. Client or project-specific utility clearances may also be required, such as air-knifing or ground-penetrating radar (GPR) and should be specified in the site-specific work plan.

2.3 General Soil Sampling Procedures

These are general soil sampling procedures. However, regulatory requirements may dictate a different procedure.

- Refer to other TRC SOPs for the proper procedures for classifying soil samples (<u>ECR SOP</u> 005) and for screening of samples for VOCs (<u>ECR SOP 014</u>). Special care is required when sampling for PFAS Please refer to Attachment D for details.
- 2. For sampling in the State of California only: When the sampling interval is predetermined and soil samples are collected by direct-push methods into an acetate liner, the section of the liner corresponding to the predetermined depth interval may be cut off and submitted to the laboratory for analysis with the exception of samples for VOC, volatile petroleum hydrocarbon (VPH), or gasoline-range organics (GRO) analysis. If VOC, VPH, or GRO analysis is required, then these samples can be collected from either open end of the acetate liner section according to the procedures outlined in Attachment A prior to packaging and submitting it to the laboratory. The laboratory should be consulted for the required length of liner tube (i.e., sample volume) depending on the analytical suite and to ensure that the use of acetate liners is appropriate for the analytical method(s). After collecting material for the VOC, VPH, or GRO analysis samples (if required), seal each end of the acetate liner section with Teflon tape and plastic end caps. Label the acetate liner with the sample identification (ID) and date and time of collection. Ensure that the laboratory will perform homogenization of the soil sample within the acetate liner and proceed to Step #9.
- 3. Prior to the collection of soil samples from a particular location or depth, the soil is typically screened for organic vapors with a portable meter equipped with a FID and/or PID depending upon the suspected contaminants of concern, site-specific work plan requirements, and/or regulatory requirements. Such organic vapor screening may be used to determine appropriate soil sample locations or depths for laboratory VOC analysis depending upon established site-specific work plan requirements. Soil should be screened *in situ* or immediately upon retrieval of the soil sample from the subsurface. It is good practice to photograph surface soil, stockpiles, etc. prior to sample collection with measurements and orientation identified for reference.

- 4. Samples for VOC, VPH, or GRO analysis are then collected as soon as possible after the soil has been exposed to the atmosphere and prior to sample collection for other analyses. Refer to Attachment A.
- 5. After collecting the sample(s) for VOC analysis, the sample portion for the remaining analyses should be well homogenized in a decontaminated stainless-steel bowl, disposable new aluminum pie pan, plastic bowl (for inorganics), or re-sealable plastic bag (for inorganics). These soil samples must be thoroughly mixed to ensure that the sample is uniform and as representative as possible of the sample media. Samples for VOC analysis are not homogenized. The most common method of mixing is referred to as quartering. The quartering procedure should be performed as follows:
 - The material in the sample pan should be divided into quarters and each quarter should be mixed individually.
 - Two quarters should then be mixed to form halves.
 - The two halves should be mixed to form a homogenous matrix.

This procedure should be repeated several times until the sample is adequately mixed. If round bowls are used for sample mixing, adequate mixing is achieved by stirring the material in a circular fashion, reversing direction, and occasionally turning the material over. Soil can be homogenized and transferred to sample containers using soil sampling devices that have been decontaminated (e.g., stainless steel spoon) prior to use or individually wrapped or new devices (e.g., plastic scoopula). Such devices are generally for one-time use. Stainless steel devices may be decontaminated and individually foil wrapped, plastic bagged, or field decontaminated and foil wrapped between uses. Decontamination of sampling equipment shall be conducted in accordance with TRC's <u>SOP on equipment decontamination</u>.

- 6. Stones, gravel, or vegetation should be removed from the soil sample as much as practical prior to placement in sample containers, since these materials will not be analyzed. Visible asphalt, concrete, ash, slag, and coal debris should also be removed from the sample as much as possible to ensure sufficient soil quantity for laboratory analyses, unless these matrices are part of the overall characterization program. The soil sample must be representative of what the end user is trying to characterize. In addition, if such debris is to be tested, further sample preparation (e.g., pulverizing) will likely be necessary in the field or laboratory. In any case, the presence of any such materials in the soil at the sample location must be documented in the fieldnotes.
- 7. Filling of the sample bottles should be completed immediately after sample collection to minimize losses due to volatilization and biodegradation. Soil classification can be completed following VOC sample collection.
- 8. Place the sample into an appropriate, labeled container(s) by using the alternate shoveling method and secure the cap(s) tightly. The alternate shoveling method involves placing a spoonful of soil in each container in sequence and repeating until the containers are full or the sample volume has been exhausted. Threads on the container and lid should be cleaned to ensure a tight seal when closed.
- 9. Restore the sampling location to grade in accordance with applicable state or federal guidelines and/or the site-specific work plan. Options include backfilling the sample location

with the remaining removed soil, bentonite pellets, or cement/bentonite grout depending on site conditions/hole depth and patching the surface to match the surrounding area (e.g., topsoil with grass seed, asphalt, or concrete patch), as necessary. The site-specific work plan may prohibit the backfilling of sample locations with removed soil if there is evidence of contamination, site-specific restoration requirements, etc. Boreholes must be abandoned or backfilled after the completion of sampling. In general, shallow boreholes (e.g., less than 10 feet deep) that remain open and do not approach the water table may be abandoned by pouring a cement/bentonite grout mixture from the surface or pouring bentonite pellets from the surface and hydrating the pellets in lifts. The grout mixture should be based on site-specific work plan procedures, and local regulatory requirements. Boreholes where bridging of the bentonite may be an issue, such as boreholes that intercept groundwater or are greater than approximately 10 feet in depth, should be backfilled by pressure grouting with a cement/bentonite grout mixture, either through a re-entry tool string or through a tremie pipe introduced to within several feet of the borehole bottom.

10. Record locations of soil borings/samples in the field notes by sketching a map and/or providing a description of the location. Always measure and record distances to fixed landmarks, such as buildings, fences, curbs, existing surveyed wells, etc. Additionally, photographs or a GPS unit with real-time sub-meter accuracy (not applicable for interior samples or other site conditions such as heavy tree/brush cover and thick cloud cover that limit unit connection with satellites) could be used to document sample locations. Note observations about elevation changes between sample locations.

3.0 SURFACE SOIL SAMPLING METHODS

The depth of surface soil samples will be determined on a site-specific basis and may be influenced by site-specific conditions and/or applicable local, state, or federal regulatory programs and potential exposure pathways. Surface soils are generally classified as soils between the ground surface and 6 to 12 inches below ground surface (bgs). The most common interval is 0 to 6 inches; however, the data quality objectives of the investigation or regulatory requirements may dictate another interval, such as 0 to 3 inches for risk assessment purposes.

The following procedure should be used for surface soil sampling:

- 1. If a thick, matted root zone, leaf layer, gravel, surface debris, concrete, etc. is present at or near the surface, it should be carefully removed using clean, decontaminated tools or clean nitrile gloves before the soil sample is collected. The presence and thickness of any such material should be recorded in the field notes for each location. The depth measurement for the soil sample begins at the top of the soil horizon, immediately following any such removed materials.
- 2. A decontaminated stainless-steel spoon, scoop, or trowel is typically used for surface soil sampling depths from 0 to 12 inches bgs where conditions are generally soft and there is no problematic vegetative layer to penetrate. A hand auger or shovel may also be used to dig down to the desired depth, and then after careful removal of the dug soils from the hole, a decontaminated stainless-steel spoon, scoop, or trowel is used to collect the soil sample from the bottom of the hole for laboratory chemical analysis. Plated trowels typically available

from garden supply centers should not be used due to potential heavy metal impacts from the trowel plating.

- 3. When using stainless steel spoons or trowels, consideration must be given to the procedure used to collect a soil sample for VOC analysis. Samples for VOC, VPH, or GRO analysis must be collected first and never homogenized or composited. These samples are collected using an open-barrel disposable syringe, a Terra Core[™] sampler, an En-Core[®] sampler, or equivalent. If the soil being sampled is cohesive and holds its *in-situ* texture in the spoon or trowel, the En-Core[®] sampler or disposable syringe used to collect the sub-sample should be plugged directly from the spoon or trowel. However, if the soil is not cohesive and crumbles when removed from the ground surface for sampling, the sub-sample should be plugged directly from the surface of the appropriate sample depth. Additionally, note that En-Core[®] samplers are not recommended for non-cohesive soils (see Attachment A). Generally, the sample portion for VOC analysis is collected from several inches below grade to minimize volatilization from the *in-situ* soil.
- 4. Continue by following the General Soil Sampling Procedures in Section 2.3.

4.0 SUBSURFACE SOIL SAMPLING METHODS

The general soil sampling procedures described above should be followed for subsurface sampling. There are numerous options available for subsurface soil retrieval for sampling, including the following:

- Hand auger methods
- Direct-push drilling (standard or dual tube)
- Hollow-stem auger drilling with split spoon or continuous core sampling
- Shelby tube/thin walled sampling
- Roto-sonic drilling
- Excavator sampling (remedial excavations/trenching and test pits)

Other drilling methods not covered are available and may be appropriate for specific project purposes. Project specific procedures should be defined in project documentation. Be sure that the drilling method selected is appropriate for required sample volumes. For information regarding the applicability and details of commonly used subsurface sampling technologies please refer to Attachment E.

4.2 Hand Auger Sampling Methods

The following procedure is used for collecting soil samples with a hand auger:

- 1. Attach the auger head to a rod extension and attach the T-handle to the rod.
- 2. Clear the area to be sampled of any surface debris (e.g., twigs, rocks, litter). It may be advisable to remove the first several inches of surface soil and any root layer for an area approximately 6 inches in radius around the borehole location.

- 3. Begin augering, periodically removing and depositing accumulated soils onto a plastic sheet spread near the borehole or other appropriate container. This prevents accidental brushing of loose material back down the borehole when removing the auger or adding rod extensions. It also facilitates refilling the borehole and avoids possible contamination of the surrounding area.
- 4. When the sample depth is reached, remove the bucket used to advance the borehole and attach a decontaminated or clean bucket. Place the clean auger bucket in the borehole, advance the clean auger bucket to fill it with the soil sample, and then carefully remove the clean auger bucket.
- 5. If VOC analysis is to be performed, collect a sample directly at the bottom of the boring, if within reach, and not from the auger bucket. If not within reach, collect the sample directly from the auger bucket or from minimally disturbed material immediately after the auger bucket is emptied. Use an En-Core[®] sampler or other coring device (i.e., syringe, Terra CoreTM) to collect the sub-sample as described in Attachment A. Note: some regulatory agencies do not allow for subsurface VOC sample collection directly with a hand auger; refer to the site-specific work plan and regulatory requirements to ensure the collection of VOC samples with a hand auger is appropriate.
- 6. Continue by following the General Soil Sampling Procedures in Section 2.3. Note that if another sample is to be collected in the same borehole, but at a greater depth, reattach the auger bucket to the rod assembly, and follow steps 1 through 5 above, making sure to decontaminate the sampling device between samples.

Special Considerations for Hand Auger Sampling

- *Slough* Because of the tendency for the auger bucket to scrape material from the sides of the auger hole while being extracted, the top several inches of soil in the auger bucket should be discarded prior to placing the bucket contents in the homogenization container for processing.
- *VOC Sample Collection* Observe precautions for VOC sample collection found in Attachment A and/or the site-specific work plan.
- *Decontamination* If sampling equipment is to be reused at a new sampling location or at a deeper depth in the same location, proper decontamination of sampling equipment is required.

4.3 Direct-Push Sampling Methods

Direct-push sampling methods include but may not be limited to the following techniques:

- Macro-Core[®] Sampler (Direct-push)
- Dual-tube Soil Sampling System (Direct-push) -
- Discrete Sampling

The following procedure is used for collecting soil samples from direct-push soil cores:

1. The driller will advance and extract the soil sample liner which will then be given to the field sampler - confirm with the driller which end is top and which end is bottom. Record the time

of core collection (military time), the soil boring ID and the depth interval in feet bgs in the field notes, field log sheet, or electronic data collection form.

- 2. Measurement of vertical depth should start from the top of the ground surface. The presence and thickness of surface asphalt, surficial concrete slabs, or gravel sub-base should be noted on the boring log and in the field notes.
- 3. Measure the length of recovered soil in inches and record in the field notes.
- 4. Continue by following the General Soil Sampling Procedures in Section 2.3.

If a specific depth interval is targeted for sampling, be sure to give consideration to the percent recovery of soil and use professional judgement when selecting the sample interval. For example, if the targeted sample interval was from 2.0 to 2.5-ft, and the core barrel was advanced from 0 to 4 ft bgs, and 30 inches (2.5 ft) of soil was recovered, the sample should be collected immediately below the mid-point of the recovered soil, or 15 inches below the top of the recovered soil (not including slough). If the sample interval is comprised of multiple soil types, there may be one or more materials that are underrepresented in the sample tube (e.g., when a more dense/stiff material overlies a softer material). The sampler should use their best professional judgement to select the sample interval. The sample designation will indicate that the depth was 2.0 to 2.5 ft bgs.

Special Considerations for Direct-push Sampling

- *Liner Use and Material Selection* Direct-push soil samples are collected within a dedicated new or decontaminated liner to facilitate removal of sample material from the sample barrel. The liners may only be available in a limited number of materials for a given sample tool, although overall, liners are available in brass, stainless steel, cellulose acetate butyrate (CAB), polyethylene terephthalate glycol (PETG), polyvinyl chloride (PVC) and Teflon[®]. For most investigations, the standard disposable new polymer liner material for a sampling tool will be acceptable. When the study objectives require very low reporting levels or unusual contaminants of concern, the use of more inert liner materials such as Teflon[®] or stainless steel may be necessary. However, such costly liner materials typically are not disposable and therefore require decontamination between each use.
- Sample Orientation When the liners and associated sample are removed from the sample tubes, it is important to confirm and maintain the proper orientation of the sample. This is particularly important when multiple sample depths are collected from the same push. It is also important to maintain proper orientation to define precisely the depth at which a sample was collected. Maintaining proper orientation is typically accomplished using vinyl end caps. Convention is to place red caps on the top of the liner and black caps on the bottom to maintain proper sample orientation. Orientation can also be indicated by marking on the exterior of the liner with a permanent marker.
- *Core Catchers* Occasionally the material being sampled lacks cohesiveness and is subject to crumbling and falling out of the sample liner. In such cases, the use of core catchers on the leading end of the sampler may help retain the soil until it is retrieved to the surface. Core catchers may only be available in specific materials and should be evaluated for suitability. However, given the limited sample contact that core catchers have with the sample material, most standard core catchers available for a tool system will be acceptable.

- *VOC Sample Collection* Observe precautions for VOC sample collection found in Attachment A and/or the site-specific work plan.
- *Decontamination* The cutting shoe and piston rod point are to be decontaminated between each sample interval. Within a borehole, the sample barrel, rods, and drive head may be subjected to an abbreviated cleaning to remove obvious and loose material, but must be cleaned between boreholes, such as with high-pressure water, steam, or soap solution with 5-gallon buckets and water rinse.
- *Health and Safety* Liners should be cut open with the proper tools and in accordance with TRC's health and safety policies.

4.4 Split-spoon Sampling Methods

The following procedure is used for collecting soil samples from split-spoon soil cores:

- 1. Record the blow count per 6-inch interval when advancing split-spoon samplers with the hollow stem auger rig. Record the hammer weight (e.g., 140 pounds [lb] is standard, but 300 lb may also be used to advance the spoon). Blow counts are an indication of soil density and are a measure of the number of blows it takes for a 140 lb slide hammer falling over a distance of 30 inches to penetrate 6 inches of soil. The drillers will keep the count and will repeat them to the field sampler (e.g., 11, 13, 16 means the number of blows the hammer advanced the spoon every 6 inches over a total depth interval of the split-spoon sampler, in this case over 18 inches). If refusal is encountered, the count is recorded in the field notes as "# of hammer blows / depth in inches the spoon is driven" (e.g., 50/3 means 50 blows of the hammer advanced the spoon 3 inches).
- 2. The driller will advance, extract, and open the split spoon, which will then be given to the field sampler confirm with the driller which end is top and which end is bottom, if a soil sample liner is used and removed from the spoon. Record the time of core collection (military time), the soil boring ID, and the depth interval in feet bgs in the field notes.
- 3. Measurement of vertical depth should start from the top of the ground surface.; The presence and thickness of surface asphalt, surficial concrete slabs, or gravel sub-base should be noted on the boring log and in the field notes.
- 4. Measure the length of recovered soil in inches and record in the field notes.
- 5. Continue by following the General Soil Sampling Procedures in Section 2.3.

Special Considerations for Split-spoon Sampling

- Split-spoon soil sampling for geotechnical purposes should be conducted in accordance with ASTM Method D1586 *Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soil.*
- *Slough* Generally discard the top several inches of material in the spoon before removing any portion for sampling. This material normally consists of borehole wall material that has sloughed off of the borehole wall after removal of the drill string prior to and during insertion of the split spoon.

- *VOC Sample Collection* Observe precautions for VOC sample collection found in Attachment A and/or the site-specific work plan.
- *Decontamination* Within a borehole, the split spoon sample barrels must be cleaned between each sample the driller typically has multiple barrels and can alternate between clean and dirty barrels so drilling progress is not affected by decontamination of the barrels. The augers should be decontaminated between boreholes (such as with high-pressure steam).

4.5 Shelby Tube/Thin-walled Sampling Methods

Shelby tube or thin-walled soil sampling should be conducted in accordance with ASTM Method D1587 *Practice for Thin-walled Tube Sampling of Soils for Geotechnical Purposes*.

After retrieval to the surface, the tube containing the sample is then removed from the sampler head. If samples for chemical analyses are needed, the soil contained inside the tube is then removed for sample acquisition by following the direct-push sampling procedures in Section 4.3. If the sample is collected for geotechnical parameters, the tube is typically sealed, to maintain the sample in its relatively undisturbed state, capped, labeled appropriately (including sample ID, top end of sample, inches of recovery, etc.), and shipped to the appropriate geotechnical laboratory. The tube is typically stored in an upright position to maintain the integrity of the undisturbed sample. For geotechnical use, check with the laboratory prior to sampling to understand sample volume recoveries needed to perform the actual tests.

4.6 Sonic Drilling Sampling Methods

The soil core is extruded from the core barrel or casing into a flexible plastic sleeve. The sleeve is then placed on an appropriate surface or prepared sample area to contain spoils. The sleeve is opened to screen with a PID, log lithology and collect samples. The procedures for collecting soil samples from sonic cores are the same as the procedures presented for collecting soil samples from direct-push sampling methods in Section 4.3.

Special Considerations for Sonic Drilling Sampling

- *Utility Clearance* Due to the ability of sonic drilling to advance through material that may normally cause refusal of standard DPT, extra care should be taken with clearances and borehole location selection.
- Sonic-generated soils are not undisturbed. The resonation of the core barrel during advancement energizes the skin of the sample immediately adjacent to the barrel, approximately ¹/₈ to ¹/₄ inch around the OD of the sample. Heating of the soils is possible. VOC samples particularly may require permission, approval, or data quality review to be considered representative and/or applicable to the project requirements.
- Depending on site conditions, the outer casing may require adding some water to the borehole if heaving or flowing sand(s) and gravel are present. An adequate water supply should be considered in these site-specific conditions.
- Sonic drilling sleeves in general will produce more IDW to be disposed of than DPT. The sleeves themselves can be awkward and heavy to move to a sample processing area.

4.7 Excavator Sampling Methods

The following procedures are used for collecting soil samples excavated with a backhoe or excavator:

- Refer to the site-specific work plan for the number of floor and/or sidewall samples, which is typically driven by the surface area and can vary depending on the governing regulatory agency.
- For a shallow excavation where the soil samples can be collected directly from the excavation, samples can be collected using a trowel, spoon, or coring device at the desired intervals in the excavation. A clean shovel may be used to remove a 1 to 2- inch layer of soil from the vertical face of the pit that contacted the backhoe bucket and where soil sampling is planned. Scrape the vertical face at the point of sampling to remove any soil that may have fallen from above and to expose fresh soil for sampling.
- For deeper excavations where sample locations are inaccessible, soil samples can be collected directly from the excavator bucket. Do not enter an excavation to collect a sample.
- Soil samples should be collected from the top of the soil in the excavator bucket with special care taken that residual soil on the excavator bucket is not scrapped off and placed in the excavation sample. Collect enough sample volume into a clean, stainless-steel bowl so that the sample containers can be filled at a safe distance from the excavation equipment. Confirm with the equipment operator when the sampling is complete, and excavation can continue.
- Continue by following the General Soil Sampling Procedures in Section 2.3.

Special Considerations for Excavator Sampling

- Effective communication with the excavation equipment operator is critical to collecting the samples safely. Establish a set of hand signals that will be used with the equipment operator to conduct the sampling safely. Confirm with the operator which direction the excavator arm will swing and establish a safe zone where the field staff should stand by to collect the sample. Field staff should always stand at least 3 feet away from the edge of an open excavation. Samples should be collected from the excavator bucket only after the bucket is safely on the ground and confirmation from the equipment operator is received that the equipment is stationary.
- *VOC Sample Collection* Observe precautions for VOC sample collection found in Attachment A and/or the site-specific work plan.
- Do not physically enter backhoe excavations to collect a sample if the excavations are unstable or not sloped and protected with shoring. A trench with non-cohesive soils (i.e., sand, saturated/wet muds, or flowing water at the base) is particularly susceptible to collapsing suddenly. Never enter a trench without a confined space entry permit, as required by OSHA regulations.
- Smearing is a potential issue when sampling with a backhoe or excavator. Any time a vertical or near vertical surface is sampled, such as achieved when shovels or similar devices are used for subsurface sampling, the surface should be dressed (scraped) to remove smeared soil. This is necessary to minimize the effects of contaminant migration interferences due to smearing of material from other levels.

• The backhoe/excavator bucket should be decontaminated and loose paint, grease, and rust should be removed to the extent practical prior to use for sample collection if the bucket will come in direct contact with the material to be sampled. Care should be taken to collect the soil sample from the center of the excavated material within the bucket (i.e., material that has not touched the bucket walls).

4.8 Stockpile Soil Sampling Methods

Stockpiled soils are typically sampled to characterize the soils for reuse or disposal. The stockpile sampling strategy used must consider the source of the soil, available data, field observations, shape/dimensions and volume of the pile, and sampling frequency requirements established by oversight regulatory agencies or potential soil disposal facilities.

If the stockpile is known to be a representative mixture of soil with no known or suspected significant variability of contamination with depth in the pile, the stockpile sampling may be conducted according to the surface soil sampling method described in Section 3. However, if the soil characteristics are not known or are known or suspected to vary with depth in the pile, both surface soil and deeper subsurface soil samples will be required to properly characterize the soil pile.

A backhoe or excavator equipped with a bucket can be used to collect subsurface soil samples from stockpiles. This method is often preferred for collecting subsurface soil samples from a stockpile since it allows the sampler greater opportunity to inspect the physical characteristics of the pile for potential signs of variability for determining appropriate sample depths and locations.

Typically, based on the minimum required number of samples for the estimated stockpile volume, the stockpile is divided into the appropriate number of estimated volumes equal to that sample number. For example, if the specified sample frequency is 1 sample per 1,000 cubic yards (cy) and the estimated stockpile size is 4,000 cy, the stockpile would be broken down into approximately four equal volumes or quadrants. Grab VOC samples and composite non-VOC samples, as required, would then be collected from each of the areas for characterization of the stockpile.

5.0 POST-SAMPLING ACTIVITIES

- 1. After the samples have been collected, the sampling locations must be appropriately documented. The type of documentation will depend on the project specific data quality objectives (DQOs). Sampling locations may be marked with wooden stakes colored with highly visible spray paint and/or flagging in order to identify the sample location for surveying purposes, recorded immediately using a GPS receiver with sub-meter accuracy, recorded using GPS on a mobile device, measured from building corners or other fixed reference points, or a combination of the above. If stakes/markers are used to identify the locations for photos or to physically locate the point at a future date, sample and/or location identification should be written on each stake in indelible ink or marking pen. A sketch or photograph of the sampling locations should also be included in the field notes.
- 2. Package the samples with bubble wrap and/or organic absorbent, as necessary.

- 3. Place the samples into a shipping container and cool to 4°C. If wet ice is used to cool the samples, place the ice in double-bags to prevent water from the melting ice from damaging the samples during shipment.
- 4. Complete the COC form.
- 5. Decontaminate non-disposable sampling equipment.

6.0 INVESTIGATION-DERIVED WASTE DISPOSAL

Field personnel should discuss specific documentation and containerization requirements for investigation-derived waste disposal with the Project Manager.

Each project must consider investigation-derived waste disposal methods and have a plan in place prior to performing the field work. Provisions must be in place as to what will be done with investigation-derived waste. If investigation-derived waste cannot be returned to the site, consider material containment, such as a composite drum, proper labeling, on-site storage by the client, testing for disposal approval of the materials, and ultimately the pickup and disposal of the materials by appropriately licensed vendors.

7.0 QUALITY ASSURANCE/QUALITY CONTROL

The collection of specific field quality control (QC) samples will be specified in the projectspecific planning documents and/or specified by the regulatory agency. and may include one or more of the following: field blank, equipment blank, trip blank, field duplicate, and/or matrix spike/matrix spike duplicates.

7.2 Duplicate Soil Sample Collection

The following procedures should be used for collecting duplicate soil samples:

- 1. For QC purposes, each duplicate sample will be submitted to the laboratory as a "blind" duplicate sample, in that a unique sample identification not tied to the primary sample identification will be assigned to the duplicate (e.g., DUP-01). Standard labeling procedures used for soil sampling will be employed. However, a sample collection time will not be included on the sample label or the COC form. The actual source of the duplicate sample will be recorded in the field notes.
- 2. Each duplicate sample will be collected simultaneously with the actual sample in accordance with the same collection procedures. At the same step in the sampling procedures that the VOC, VPH, and/or GRO containers are filled and sealed, the duplicate sample VOC, VPH, and/or GRO containers will also be filled and sealed. Duplicates for all parameters other than VOCs, VPH, and GRO should be filled from the homogenized sample to ensure consistency between the sample and the duplicate. Following the order of collection specified for each set of containers (i.e., VOCs, VPH, GRO, semivolatile organic compounds [SVOCs], other organics and then inorganic compounds), the duplicate sample containers will be filled simultaneously with each parameter.

3. Collection and preservation procedures outlined for soil sampling will be followed for each duplicate sample.

8.0 DATA MANAGEMENT AND RECORDS MANAGEMENT

Record the general sample collection information such as location, identification, and date/time in the field notes or on a field data sheet. Typical field documentation recorded in field notes includes the following information:

- Sample identification number
- Sample location (description or sketch of the sample point)
- Sample depth interval
- GPS coordinates and coordinate system
- Time and date sample was collected
- Personnel performing the task
- Visual or sensory description of the sample (e.g., odors, staining)
- Brief soil descriptions (e.g., color, texture, appearance)
- Presence of any fill materials (e.g., concrete, asphalt, ash)
- Readings from field screening equipment (e.g., PID)
- Weather conditions during sampling (e.g., temperature, wind)
- Other pertinent observations including whether photographs were taken
- Sample collection equipment used
- Decontamination procedure
- Analytical parameters

Affix a properly completed label to each sample container.

All sample numbers must be documented on the COC form that accompanies the samples during shipment. Any deviations from the record management procedures specified in the site-specific work plan must be approved by the Project Manager and documented in the field notes.

For projects using TRC's Environmental Data Management System (EDMS), the project team's Data Manager can assist in planning sampling events to prepopulate bottle labels and chain of custody forms and keep track of COC forms and laboratory EDDs generated for the project. The TRC EDMS system has a completeness report that can track the samples collected and the analyses performed as data are received from the laboratory.

TRC's EDMS includes an approved electronic mobile field data collection system (e.g., EQuIS Collect, Fulcrum, or esri Collector). A TRC Data Manager must be assigned for coordination and setup of the respective application to be used by the project team. The details and specifications of the sampling event should be discussed with the TRC Data Manager during the project kickoff meeting. The TRC Data Manager will work with the TRC project team and field personnel on configuring the system for efficient use in the field with pre-populated, project-specific menus following TRC's best practices for sample ID naming conventions compatible with TRC's EDMS.

For projects that do not use electronic mobile field data collection systems field notes containing sample IDs, sample date, sample matrix, sample start depth, sample end depth, sample method, sample event task code, and sample purpose, along with GPS coordinates for each sample location ID should be transcribed into TRC's standard Location and Field Sample EDDs for import into TRC's EDMS as soon as the soil sampling event is completed, preferably the same day in order to get data into the EDMS in as near real time as possible.

9.0 SUSTAINABLE RECOMMENDATIONS

Sustainable practices should be incorporated wherever practical. Items to consider for soil sampling are as follows:

- Utilize reusable equipment as appropriate;
- Utilize recycled material as appropriate (i.e., Recycle plastic bags or use green bags);
- Utilize laboratories with smaller sample containers;
- Utilize electronic data collection methods rather than paper for field notes and boring logs

10.0 REFERENCES

ASTM Methods D1586 Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soil, D1587 Practice for Thin-walled Tube Sampling of Soils for Geotechnical Purposes, ASTM D6169 Standard Guide for Selection of Soil and Rock Sampling Devices Used With Drill Rigs for Environmental Investigation, ASTM International, Most Current Version.

California EPA, Guidance Document for the Implementation of United States Environmental Protection Agency Method 5035: Methodologies for Collection, Preservation, Storage, and Preparation of Soils to be Analyzed for Volatile Organic Compounds, November 2004

MassDEP, Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), May 2004.

U.S, EPA, SW-846 Method 5035A, *Closed System Purge-and-Trap and Extraction for Volatile Organics in Soil and Waste Samples*, Draft Revision 1, July 2002.

U.S. EPA Environmental Response Team, Soil Sampling SOP #2012, February 18, 2000.

U.S. EPA Science and Ecosystem Support Division, Soil Sampling Operating Procedure (SESDPROC-300-R2), December 20, 2011.

11.0 SOP REVISION HISTORY

REVISION NUMBER	REVISION DATE	REASON FOR REVISION
0	SEPTEMBER 2013	NOT APPLICABLE
1	NOVEMBER 2016	ADDED ATTACHMENT D TO ACCOMMODATE SOP MODIFICATIONS REQUIRED WHEN SAMPLING FOR PFAS; CHANGED NAMING CONVENTION FOR SOP FROM RMD TO ECR.
2	JANUARY 2020	TRC RE-BRANDING
3	AUGUST 2020	ADDITIONAL MODIFICATIONS FOR PFAS SAMPLING
4	JANUARY 2022	SOP UPDATE

Attachment A:

Procedure for Collection of Samples for VOCs, VPH, or GRO (SW-846 Method 5035A)

SOIL SAMPLING PROCEDURES - SOP 003 FACT SHEET

1.0 SAMPLING FOR VOLATILE ORGANIC COMPOUNDS IN SOIL BY EPA METHOD 5035/5035A

The following sampling protocol is recommended for site investigations assessing the extent of VOCs (including VPH and GRO) in soils. Because of the large number of options available, careful coordination between field and laboratory personnel is needed. The specific sampling containers and sampling tools required will depend upon the required detection levels and intended data use. Once this information has been established, selection of the appropriate sampling procedure and preservation method best applicable to the investigation can be made.

SW-846 Method 5035 provides instructions and options on the preservation of soil samples for low-level and high-level VOC analyses:

- Low-level ($\leq 200 \ \mu g/kg$) and
- High-level (> $200 \mu g/kg$).

The choice of low-level or high-level analysis is determined by the requirements of the project. However, since the low-level method is only valid for a certain concentration range, a sample for analysis by the high-level method must also be collected to ensure quantification of all target analytes is possible, if needed.

The low-level method uses one or more of the following options for the sampling/preservation of soils:

- Soil sampled into a vial with a sodium bisulfate (NaHSO₄) solution.
- Soil collected in an En-Core[®] sampler and immediately shipped to the laboratory for further preservation (within 48 hours).
- Soil collected in a vial with organic-free water, sealed in the field, and shipped to the laboratory immediately in order to meet the method preservation requirement to freeze within 48 hours of collection.

Based on project-specific requirements, trip blanks may be recommended. Refer to the site-specific work plan for quality assurance (QA)/QC requirements.

1.1 Low-level Method (VOCs)

Option A - Direct sampling into En-Core[®] samplers

- Three 5-gram size En-Core[®] samplers for each sample.
- One non-preserved container for moisture determination.

Option B - Direct sampling into vial with chemical preservative

- Two 5-gram size cores are added to volatile organic analysis (VOA) vials (one soil core is added to each of two VOA vials with sodium bisulfate solution) for each sample using a Terra CoreTM or other coring sampler (e.g., disposable syringe). Once the vials are sealed in the field, these are not opened again.
- One non-preserved container for moisture determination.

Option C - Direct sampling into vial with water (to be frozen at the laboratory)

- Two 5-gram size cores are added to VOA vials (one soil core is added to each of two VOA vials with water) for each sample using a Terra CoreTM or other coring sampler (e.g., disposable syringe). Once the vials are sealed in the field, these are not opened again.
- One non-preserved container for moisture determination.

1.2 High-level Method (VOC, VPH, GRO)

Option A - Direct sampling into En-Core® samplers

- One 5-gram size En-Core[®] sampler for each sample.
- One non-preserved container for moisture determination.

SOIL SAMPLING PROCEDURES - SOP 003 FACT SHEET

Option B - Direct sampling into a methanol-preserved vial

- For VOCs: 5 or 10 grams of soil is added to a VOA vial (with 5 or 10 grams of methanol, respectively) for each sample using a Terra Core[™] or other coring sampler (e.g., disposable syringe). This may also depend upon the regulatory agency (e.g., New Jersey Department of Environmental Protection requires 8 to 12 grams in 25 mL methanol or 5 grams in 10 mL methanol).
- For VPH or GRO: The coring device will be filled with 25 grams of undisturbed soil if 60-ml vials with 25 ml of methanol are used, or 15 grams of undisturbed soil if 40-ml vials with 15 ml of methanol are used. The goal is to have a 1:1 ratio of soil- to- methanol.
- One non-preserved container for moisture determination.

1.3 Cautions and Potential Problems

1. Potential leaking sample containers for VOC, VPH, and GRO analyses:

Options for evaluating containers for leaking preservatives:

- a. When ordering pre-preserved sample containers, laboratories should be encouraged to mark the meniscus of the preservative on all sample containers. The preservative level should be checked before sampling as a quick check that there has not been any loss of liquid.
- b. Compare preservative level in multiple bottles and select one for comparison purposes to subsequent sample bottles.
- c. Weigh methanol-preserved sample containers prior to sampling. Sample containers found to have lost greater than 0.2 grams of methanol compared to their initial weight should not be used. In order to perform this option, initial container weights must be provided by the laboratory.
- 2. <u>Potential methanol absorption:</u>

Soil may be encountered that absorbs all of the methanol preservative (e.g., organic-rich soil, fine-grain soil). These soils can absorb the methanol leaving no methanol extract for the laboratory to analyze. In these instances, the use of additional methanol is required. The laboratory must be contacted for sample containers with an increased volume of methanol. Using a 1:2 ratio of soil to methanol will help to ensure that there will be adequate volume of methanol remaining for analysis. **NOTE: Additional methanol should <u>not</u> be added to the sample container by the sampler in the field. Containers with additional methanol must be obtained from the laboratory.**

3. <u>Collection of samples with high moisture content:</u>

Soil samples with high (>50%) moisture content (e.g., sediments, soil samples below the water table) may prevent the attainment of the ideal 1:1 soil-to-preservative ratio. In these instances, depending on the data quality objectives, it may be necessary to evaluate the soil to determine what level in the disposable syringe corresponds to the required weight (typically 5 grams for VOCs and 15 or 25 grams for VPH). This can be performed by collecting several trial samples with disposable syringes. Weigh each trial sample and note the length of the soil in the syringe. These measurements would be used to determine how much soil in the syringe corresponds to 5 ± 0.5 grams (or the desired weight ± 0.5). All trial samples should be discarded and not used for analysis.

- 4. <u>En-Core[®] sampler cautions:</u>
 - a. En-Core[®] samplers, or equivalent, should only be used on fine-grain or cohesive soils (soils that stay together in the En-Core[®] sampler and do not fall apart). En-Core[®] samplers should not be used to collect soil samples that consist of dry sand, gravel, or a mixture of gravel and fines, or samples with high moisture (e.g., sediments and soil samples below the water table). In the case of soil samples that consist of dry sand, gravel and fines, or samples with high moisture (e.g., sediments and soil samples below the water table). In the case of soil samples that consist of dry sand, gravel, or a mixture of gravel and fines, or samples with high moisture (e.g., sediments and soil samples below the water table), a stainless-steel spatula or scoop should be used with field preservation techniques.
 - b. The En-Core[®] sampler is a single-use device and cannot be decontaminated and reused.

- c. The volume of material collected in an En-Core[®] sampler should not cause excessive stress on the coring tool.
- d. The volume of material collected should not be so large that the sample easily falls apart during extrusion.
- e. The En-Core[®] sampler should not be used if any of the components are damaged as the seals may be compromised. Under no circumstances should any components be removed or disturbed.
- f. It is important to make sure air is not trapped behind the sample, as this could cause air to pass through the sample, resulting in a loss of VOCs, or it could cause the sample to be pushed prematurely from the coring tool.
- 5. Potential effervescence with use of sodium bisulfate as a preservative for low-level VOC analysis of soils:

This method of preservation is not preferred and, therefore, is not outlined below. If it is used, the following cautions exist:

- a. Carbonaceous or strongly alkaline soils may cause potential effervescence when reacting with the sodium bisulfate and may result in a loss of VOCs and a shattered vial. If effervescence occurs, sodium bisulfate should not be used. The laboratory must be contacted and low-level preservation techniques, using water only, should be followed.
- b. Loamy materials or materials containing decayed material may result in false positive results for acetone due to the interaction with the sodium bisulfate.
- c. Some VOCs may be lost due to the resulting acidification when sodium bisulfate is used (e.g., styrene, 2-chloroethyl vinyl ether, acrylonitrile).
- d. Some VOCs may be lost if the laboratory is using a heated purge in combination with the sodium bisulfate preservative (e.g., methyl tert butyl ether [MTBE] and other fuel oxygenates).

1.4 Sample Containers and VOC Sampling Equipment

• Method 5035A-compatible containers or kits (for VOCs, VPH, and GRO): Preservatives may be required for some samples with certain variations of SW-846 method 5035A – consult the governing regulatory agency or principal analytical chemist to determine which preservatives are necessary.

<u>Low-level VOCs:</u> two 40-mL VOA vials pre-preserved with 5 mL organic-free water and also containing a magnetic stir bar.

- <u>High-level (or medium-level) VOCs:</u> one 40-mL VOA vial pre-preserved with 5 or 10 mL of purge-and-trap-grade methanol. Volume will be dependent upon laboratory's preference or regulatory agency requirements (e.g., New Jersey Department of Environmental Protection prefers vials with 10 or 25 mL of purge-and-trap-grade methanol).
- <u>VPH and GRO</u>: One 60-mL vial pre-preserved with 25 mL of purge-and-trap-grade methanol **or** One 40mL VOA vial pre-preserved with 15 mL of purge-and-trap-grade methanol **and**
- One glass container (or other appropriate container) with no preservative to allow the laboratory to perform the percent solids measurement. NOTE: The laboratory typically requires a minimum of 20 grams to perform this test. Therefore, submitting a sample size less than 4 ounces may be acceptable. This additional container will not be required if the sample is also being submitted for other non-VOC parameters.
- En-Core[®] samplers, or equivalent, for VOC, VPH and/or GRO analysis:

High-level VOC or GRO analysis: one 5-gram En-Core® sampler.

Low-level VOC analysis: two 5-gram En-Core[®] samplers.

- VPH, GRO or toxicity characteristic leaching procedure (TCLP) VOC analysis: one 25-gram En-Core[®] sampler.
- Disposable plastic syringes or Terra Core[™] samplers.
- Foam VOC vial holders.
- Portable digital scale (accurate to ± 0.01 grams) with calibration weights.

2.0 COLLECTION OF SAMPLES USING EN-CORE[®] SAMPLERS, OR EQUIVALENT

- The sample will be collected using an En-Core[®] sampler, or equivalent, as soon as possible after the soil has been exposed to the atmosphere.
- Check that the En-Core[®] sampler, or equivalent, is full using both of the following procedures:
 - a. Be sure that the back o-ring on the plunger can be seen when looking through the viewing hole on the handle. This will mean that the soil has pushed the plunger fully to the back.
 - b. The plunger can only be rotated when it is fully pushed to the back of the body. Therefore, it is important to twist the plunger to guarantee that the soil has filled the sampler and the back o-rings have sealed.
- Immediately seal the En-Core[®] sampler, or equivalent. Be sure to twist the cap as it is pushed on. The cap is properly sealed when the two locking arms are completely and symmetrically over the body ridge.
- The samples must be shipped to a laboratory within 24 hours of sampling to ensure the 48-hour hold time for preservation will be met.
- In the event that a field screening technique (instrument reading or visual staining of the soil) indicates the possible presence of VOCs or hydrocarbons, note the observations or instrument readings in the field notes. If the field screening technique does not indicate the presence of VOCs, this should also be noted.
- If samples are collected for only VOC and VPH analyses, a separate aliquot must be collected in an unpreserved container in order for the laboratory to perform a dry weight determination.

3.0 COLLECTION OF SAMPLES USING FIELD PRESERVATION

- Samples for VOCs will be collected as soon as possible after the soil has been exposed to the atmosphere.
- Samples for VOCs will be collected first (prior to collection of samples for other parameters) using an openbarrel disposable syringe, Terra Core[™] sampler, or equivalent. In the case of soil samples that consist of dry sand, gravel, or a mixture of gravel and fines, or samples with high moisture (e.g., sediments and soil samples below the water table), an open-barrel disposable syringe may not be practical; a stainless steel spatula or scoop can be used with field preservation techniques.
- Soil samples for VOC analyses should **never** be homogenized.
- Each pre-preserved sample container will be weighed prior to sample collection, and the container/preservative weight will be recorded. This procedure will generally be performed by the laboratory prior to shipping the containers to the field.
- Depending upon project requirements, samples for VOC analysis will be collected as low-level, high-level, or both.

A. Low-level VOCs

1. The syringe will be filled with undisturbed soil of the following volume: 5 grams of soil.

As an option to the syringes, 5-gram Terra CoreTM samplers, or equivalent, can be used. The goal is to have a 1:1 ratio of soil- to- preservative.

- 2. The soil will be extruded into a pre-preserved VOA vial containing a magnetic stir bar and 5 mL organic-free water. This will be done in replicate.
- 3. Any sand grains present on the container rim or cap must be removed to ensure an air-tight seal of the vial. The VOA vial will be capped quickly and labeled with the sample ID, date, and time of collection. Labels should not be written on the cap of the vial.
- 4. Gently swirl sample to break up the soil aggregate, if necessary, until the soil is covered with preservative. It is imperative that the soil sample be completely immersed in the preservative solution.

- 5. In the event that a field screening technique (instrument reading or visual staining of the soil) indicates the possible presence of VOCs or hydrocarbons, note the observations or instrument readings in the field notes. If the field screening technique does not indicate the presence of VOCs, this should also be noted.
- 6. If samples are collected for only VOC analysis, a separate aliquot must be collected in an unpreserved container in order for the laboratory to perform a dry weight determination.

B. High-level VOCs, VPH, or GRO

1. High-level VOCs: The syringe will be filled with undisturbed soil of the following volume: 5 or 10 grams of soil for high-level analysis (added to the 5 or 10 ml of methanol, respectively). This may also depend upon the regulatory agency (e.g., New Jersey Department of Environmental Protection requires 8 to 12 grams in 25 mL methanol or 5 grams in 10 mL methanol).

VPH or GRO: The syringe will be filled with 25 grams of undisturbed soil if 60-ml vials with 25 ml of methanol are used, or 15 grams of undisturbed soil if 40-ml vials with 15 ml of methanol are used. The goal is to have a 1:1 ratio of soil- to- methanol.

As an option to the syringes, 5-gram Terra CoreTM samplers, or equivalent, can be used. Typically, the goal is to have a 1:1 ratio of soil- to- preservative.

- 2. The sample will be extruded into a VOA vial containing purge-and-trap grade methanol
- 3. Any sand grains present on the container rim or cap must be removed to ensure an air-tight seal of the vial. The VOA vial will be capped quickly and labeled with the sample ID, date, and time of collection. Labels should not be written on the cap of the vial.
- 4. Gently swirl sample to break up the soil aggregate, if necessary, until the soil is covered with preservative. It is imperative that the soil sample be completely immersed in the preservative solution.
- 5. In the event that a field screening technique (instrument reading or visual staining of the soil) indicates the possible presence of VOCs or hydrocarbons, note the observations or instrument readings in the field notes. If the field screening technique does not indicate the presence of VOCs, this should also be noted.
- 6. Methanol is considered to be a hazardous material by the US Department of Transportation (DOT) and the International Air Transportation Association (IATA). Shipments containing methanol between the field and the laboratory must conform to the rules established in Title 49 of the Code of Federal Regulations (49 CFR parts 171 to 179) and the most current edition of the IATA Dangerous Goods Regulations. The volumes of methanol recommended in the VOC method fall under the small quantity exemption of 49 CFR section 173.4. Refer to Attachment B for further details.
- 7. If samples are collected for only VOC analysis, a separate aliquot must be collected in an unpreserved container in order for the laboratory to perform a dry weight determination.

Attachment B:

Shipping Methanol-preserved Samples

Shipping of Hazardous Materials

Methanol is considered a hazardous material by the US Department of Transportation (DOT) and the International Air Transport Association (IATA). Shipments of methanol between the field and the laboratory must conform to the rules established in Title 49 of the Code of Federal Regulations (49 CFR parts 171 to 179) and the most current edition of the IATA Dangerous Goods Regulations. Consult these documents or your shipping company for complete details.

Small Quantity Exemption

The volumes of methanol recommended in the high-level VOC, VPH, and GRO methods fall under the small quantity exemption of 49 CFR section 173.4. To qualify for this exemption, all of the following conditions must be met:

- ♦ the maximum volume of methanol in each sample container must not exceed 30 mL
- ♦ the sample container must not be full of methanol
- the sample container must be securely packed and cushioned in an upright position and be surrounded by a sorbent material capable of absorbing spills from leaks or breakage of sample containers
- ♦ the package weight must not exceed 64 pounds
- \diamond the volume of methanol per shipping container must not exceed 500 mL
- ♦ the packaging and shipping container must be strong enough to hold up to the intended use
- ♦ the package must not be opened or altered while in transit
- \diamond the shipper must mark the shipping container as follows:

"This package conforms to 49 CFR 173.4"

When shipping domestically by Federal Express via ground or air, the following rules apply:

- ♦ follow the inner packaging requirements of 49 CFR 173.4
- ◊ no labels, placards, up arrows, or dangerous goods shipping papers are required
- ♦ if the Federal Express airbill has a shipper's declaration for hazardous goods on it, check the Yes box under *Shipper's Declaration not Required*

When shipping internationally by Federal Express, the following rules apply:

- ♦ follow the inner packaging requirements of 49 CFR 173.4
- ◊ use dangerous goods shipping papers
- apply orientation arrows on opposite vertical sides on the exterior of the package

Shipping Papers for International Shipments

International shipments must be accompanied by dangerous goods shipping papers that include the following:

Proper Shipping Name:	Methyl Alcohol
Hazardous Class:	Flammable Liquid
Identification Number:	UN1230
Total Quantity:	(mL methanol/container x the number of containers)
Emergency Response Info:	Methanol SDS attached
Emergency Response Phone:	1-800-424-9300

Attachment C:

SOP Fact Sheet

PURPOSE AND OBJECTIVE

Soil sampling is conducted in order to obtain a representative sample for laboratory analysis of constituents of interest at a given site. Soil samples may be collected using a variety of methods and equipment depending on the depth of the desired sample, the type of sample required (disturbed vs. undisturbed), and the soil type.

	WHAT 1	O BR	ING
•	Appropriate level of personal protective equipment (PPE), as specified in the site-specific Health and Safety Plan (HASP). Sample containers: The proper containers should be determined in conjunction with the analytical laboratory in the planning stages of the project, and will depend on the analytical program, laboratory SOPs, and regulatory requirements. For non-volatile organic compound (VOC) parameters, glass containers with Teflon [®] -lined caps are typically utilized. Typical containers used for VOC parameters are provided in Attachment A. Brass liners, steel liners, or soil core acetate liners with Teflon [®] tape and plastic end caps may also be used. Stainless steel mixing bowl or new aluminum pie pan. Plastic bowl or plastic resealable bag for inorganics. Stainless steel spoon or spatula or sterile individually wrapped single use scoop. Hand auger, mud auger, sand auger, bucket auger, and/or T-handle. Post hole auger. Extension rods. Stainless steel trowel. Shovel. Applicable field screening equipment with calibration solution/gas (i.e., pH meter, photoionization detector, flume ionization detector, at a	• • • • • • • • • • • • • • • • • • •	Tape measure or folding ruler. Wooden stakes and spray paint, plastic flagging (highly visible), or steel pin flags. Field book and/or boring log. Sample container labels. Chain-of-custody (COC) forms (TRC or laboratory, as appropriate). Custody seals for sample coolers. Tape to secure sample coolers and sample container labels (if necessary). Camera. Maps/site plan. Survey equipment, global positioning system (GPS), or other means of measuring sample locations. Indelible marking pens or markers. Organic absorbent material (e.g., Slickwick, ground corn cob, sawdust). Sample coolers. Bubble wrap. Ice (for sample storage/preservation). Zip-loc [®] plastic bags (for ice and COCs). Equipment decontamination supplies (see <u>ECR SOP- 010</u>).
	OF	FICE	
•	Prepare/update the HASP; make sure the field team is familiar with the latest version. Review workplan, discuss the objective for the soil sampling program with the Project Manager and/or the	•	Confirm that all necessary equipment is available in-house or has been ordered. Rental equipment is typically delivered the day before fieldwork is scheduled. Prior to departure, test equipment and make sure it is in proper working order.
	 field lead. Develop strategy including sample order, collection method, designation, analytical parameters, turnaround times, laboratory, etc. Are the soil cuttings to be containerized in drums or returned to borehole? 	•	Verify that a utility survey/mark-out has been performed to ensure that sample locations are clear of overhead and buried utilities. Obtain a copy of the mark out ticket or confirmation number. Additionally, a private geophysical sub-surface survey may be necessary.
	 Volume of soil required for each sample? 	•	Review sample bottle order for accuracy and completeness.
	• QA/QC sample collection?	•	Confirm soil boring locations (or specific sampling areas)

Field decontamination required? 0

TRC

are clearly identified on figure and that soil boring and

sample designations are understood.

SOIL SAMPLING PROCEDURES

ON-SITE

- Verify that underground utilities have been marked out and that the mark outs are clear. Stay at least two feet away from any marked utility. Identify if any overhead obstructions or limited access areas exist near proposed borings and contact the Project Manager if any proposed locations need to be moved. Sketch/photograph mark-out • locations. Client or project-specific utility clearances such as air-knifing or GPR may also be required.
- Review the HASP with all field personnel, conduct Health & Safety tailgate meeting.
- Ensure appropriate PPE is worn by all personnel and work area is safe (i.e., utilize traffic cones, minimize interference with on-site activities and pedestrian traffic, etc.)
- Calibrate equipment (if applicable) and record all equipment serial numbers in the field book.

GENERAL SOIL SAMPLING PROCEDURES

- Refer to other TRC SOPs for the proper procedures for classifying soil samples (ECR SOP 005) and for screening of samples for VOCs (ECR SOP 014).
- Refer to Attachment D of this SOP for specialized sampling requirements for PFAS.
- Refer to the appropriate guidance documents for statespecific sampling requirements.
- Perform any required field screening in-situ or immediately upon retrieval of the soil sample from the subsurface.
- Samples for VOC, VPH, or GRO analysis are collected as soon as possible after the soil has been exposed to the atmosphere and prior to sample collection for other analyses. Refer to Attachment A of this SOP for additional details.
- After collecting the sample(s) for VOC analysis, the sample portion for the remaining analyses should be well homogenized in a decontaminated stainless-steel bowl, disposable new aluminum pie pan, plastic bowl (for inorganics), or re-sealable plastic bag (for inorganics) to ensure the sample is uniform and as representative as possible of the sample media.
- Stones, gravel, vegetation, or debris (such as concrete, asphalt, ash or slag) should be removed from the soil sample as much as practical prior to placement in sample containers, unless these matrices are part of the overall characterization program.
- Transfer to sample containers using new, clean, or decontaminated spoons/scoops.
- Filling of the sample bottles should be completed immediately after sample collection to minimize losses due to volatilization and biodegradation. Soil classification can be completed following sample collection.
- Place the sample into an appropriate, labeled container(s) by using the alternate shoveling method and secure the cap(s) tightly. The alternate shoveling method involves placing a spoonful of soil in each container in sequence and repeating until the containers are full or the sample volume has been exhausted. Threads on the container and lid should be cleaned to ensure a tight seal when closed.
- Make sure ALL sample containers are clearly labeled with the site name, sample date, sample collection time and

sample designation including depth in indelible ink. Make sure to clearly identify requested samples and analyses on the COC.

- Labeled samples should be immediately put into a cooler with ice; sample coolers should always be kept within eyesight or stored within the cab of the vehicle or other secured place such as a locked office.
- Be aware of sample holding times and arrange for samples to be in the laboratory's possession accordingly.
- Restore the sampling location to grade in accordance with applicable state or federal regulations and/or the site-specific work plan. Options include backfilling the sample location with the remaining removed soil, bentonite pellets, or cement/bentonite grout depending on site conditions/hole depth and patching the surface to match the surrounding area (e.g., topsoil with grass seed, asphalt, or concrete patch), as necessary.
- Record locations of soil borings/samples in the field book by sketching a map and/or providing a description of the location. When measuring locations of soil borings/samples, always use fixed landmarks such as buildings, fences, curbs, etc.
- Decontaminate sampling equipment in accordance with TRC's SOP (ECR SOP 010) on equipment decontamination.
- Ensure any IDW is appropriately managed. If IDW cannot be returned to the site, consider material containment, such as a composite drum, proper labeling, on-site storage by the client, testing for disposal, approval of the materials, and ultimately the pickup and disposal of the materials by appropriately licensed vendors.

SOIL SAMPLING PROCEDURES

SURFACE SOIL SAMPLING PROCEDURES

The depth of surface soil samples are typically from 0-6 in. or 0-12 in. and will be determined on a site-specific basis and may be influenced by site-specific conditions. The following procedure should be used for surface soil sampling:

- If a thick, matted root zone, leaf layer, gravel, surface debris, concrete, etc. is present at or near the surface, it should be carefully removed using clean, decontaminated tools before the soil sample is collected. The presence and thickness of any such material should be recorded in the field book for each location. The depth measurement for the soil sample begins at the top of the soil horizon, immediately following any such removed materials.
- A decontaminated stainless-steel spoon, scoop, or trowel is typically used for surface soil sampling depths from 0 to 12 inches bgs. A hand auger or shovel may also be used to dig down to the desired depth and then after careful removal of the dug soils from the hole, a decontaminated stainless-steel spoon, scoop, or trowel is used to collect the soil sample from the bottom of the hole for laboratory chemical analysis.
- Continue by following the General Soil Sampling Procedures.

HAND AUGER SAMPLING PROCEDURES

Hand augers may be used to advance boreholes and collect soil samples in shallow subsurface intervals. The auger is advanced by simultaneously pushing and turning using an attached T-handle with extensions (if needed). Auger holes are advanced one bucket at a time until the appropriate sample depth is achieved. The following procedure should be used for hand auger sampling:

- Clear the area to be sampled of any surface debris (e.g., twigs, rocks, litter).
- Begin augering, periodically removing and depositing accumulated soils onto a plastic sheet spread near the borehole.
- When the sample depth is reached, remove the bucket used to advance the borehole and attach a decontaminated or clean bucket. Place the clean auger bucket in the borehole, advance the clean auger bucket to fill it with the soil sample and then carefully remove the clean auger bucket.
- If VOC analysis is to be performed, collect a sample directly at the bottom of the boring, if within reach, and not from the auger bucket. If not within reach, collect the sample directly from the auger bucket or from minimally disturbed material immediately after the auger bucket is emptied.
- Continue by following the General Soil Sampling Procedures.
- Refer to the SOP for special considerations for hand auger sampling.

DIRECT PUSH/SPLIT SPOON/SONIC DRILLING SAMPLING PROCEDURES

For some soil investigations, soil logs provide justification for sample locations and intervals, so be descriptive and precise.

- The driller will advance the soil sampler (macrocore, split spoon, sonic casing, etc.) which will then be given to the sampler confirm with driller which end is top and which end is bottom. Record the time of core collection in the field book (military time). Begin the soil record by indicating the soil boring location and ID, followed by the depth interval in feet bgs [e.g., B-1/0-4].
- Record the blow count per six-inch interval when collecting split-spoon samplers with hollow stem auger rig. The drillers will keep the count and repeat them to you. If refusal is encountered, the count is recorded in the book as "# of hammer blows / depth in inches the spoon is driven" (e.g., 50/3 means 50 blows of the hammer advanced the spoon 3 inches).
- Measurement of vertical depth should start from the top of the ground surface. The presence and thickness of surface asphalt, surficial concrete slabs or gravel sub-base should be noted in the field book and/or boring log.
- Measure the length of recovered soil in inches and record in the field book.
- Continue by following the General Soil Sampling Procedures. If a specific depth interval is targeted for sampling, be sure to account for percent recovery when selecting the sample interval.
- Refer to the SOP for special considerations for Direct Push, Split Spoon, and Sonic Drilling sampling.

SHELBY TUBE/THIN-WALLED SAMPLING PROCEDURES

Shelby tube or thin-walled soil sampling should be conducted in accordance with ASTM Method D1587 <u>Practice for Thin-walled Tube</u> <u>Sampling of Soils for Geotechnical Purposes</u>.

To collect a sample, the tube is attached to a string of drill rod and is lowered into the borehole, where the sampler is then pressed into the undisturbed material by hydraulic force from the drill rig. After retrieval to the surface, the tube containing the sample is then removed from the sampler head.

- If samples for chemical analyses are needed, the soil contained inside the tube is then removed for sample acquisition by following the direct-push sampling procedures.
- If the sample is collected for geotechnical parameters, the tube is typically sealed to maintain the sample in its relatively undisturbed state, capped, labeled appropriately (including sample ID, top end of sample, inches of recovery, etc.), and shipped to the appropriate geotechnical laboratory. The tube is typically stored in an upright position to maintain the integrity of the undisturbed sample.

SOIL SAMPLING PROCEDURES

- For geotechnical use, check with the laboratory prior to sampling to understand sample volume recoveries needed to perform the actual tests.
 - Refer to the SOP for special considerations for Shelby Tube or Thin-Walled sampling.

EXCAVATOR SAMPLING PROCEDURES

A backhoe or excavator can be used to assist with soil sampling such as during remedial excavation activities (to collect floor and sidewall samples within the excavation), test pit installation, or trenching operations. The following procedures are used for collecting soil samples excavated with a backhoe or excavator:

- For test pits or trench excavation, excavate in accordance with the site-specific work plan. The work plan may also require that excavated soils be placed on plastic sheets or another impervious surface and protected from rain.
- Refer to the site-specific work plan for the number of floor and/or sidewall samples, which is typically driven by the surface area and can vary depending on the governing regulatory agency.
- Samples can be collected using a trowel, spoon, or coring device at the desired intervals. A clean shovel may be used to remove a 1 to 2- inch layer of soil from the vertical face of the pit that contacted the backhoe bucket and where soil sampling is planned. Scrape the vertical face at the point of sampling to remove any soil that may have fallen from above and to expose fresh soil for sampling.
- In many instances, soil sample locations within the excavation area are inaccessible (do not physically enter backhoe excavations to collect a sample). In these cases, soil samples can be collected directly from the backhoe bucket use caution not to collect a soil sample from edges that may have come into contact with the backhoe bucket.
- Continue by following the General Soil Sampling Procedures.
- Abandon the pit or excavation according to applicable state regulations and the site-specific work plan. Generally, shallow excavations can simply be backfilled with the removed soil material.
 - Refer to the SOP for special considerations for Excavator sampling.

STOCKPILE SOIL SAMPLING PROCEDURES

Stockpiled soils are typically sampled to characterize the soils for reuse or disposal. The stockpile sampling strategy used must consider the source of the soil and all available data, field observations, shape/dimensions and volume of the pile, and sampling frequency requirements established by oversight regulatory agencies or potential soil disposal facilities.

If the stockpile is known to be a representative mixture of soil with no known or suspected significant variability of contamination with depth in the pile, the stockpile sampling may be conducted according to the surface soil sampling method described above. However, if the soil characteristics are not known or are known or suspected to vary with depth in the pile, both surface soil and deeper subsurface soil samples will be required to properly characterize the soil pile. Based on the minimum required number of samples for the estimated stockpile volume, the stockpile is divided into the appropriate number of estimated volumes equal to that sample number.

Refer to the SOP for special considerations for Stockpile Soil sampling.

POST SAMPLING ACTIVITIES

- After the samples have been collected, the sampling location should be surveyed in the field with a GPS unit if not surveyed later by some other means. A sketch or photograph of the sampling locations should also be included in the field book.
- Package the samples with bubble wrap and/or organic absorbent as necessary.
- Place the samples into a shipping container and cool to 4°C. If wet ice is used to cool the samples, place the ice in double-bags to prevent water from the melting ice from damaging the samples during shipment.
- Complete and cross check the COC form.
- Refer to Attachment B in the SOP for specific guidance on shipping methanol-preserved samples.
- Decontaminate non-disposable sampling equipment.

DOS AND DO NOTS OF SOIL SAMPLING

DOs:

- No matter the work plan or the site, DO have the following items when going into the field:
 - Site-Specific HASP
 - Appropriate PPE
 - Field book and a pen with indelible ink
 - 0
 - o Business cards
- DO review soil boring logs or cross sections from previous sampling events, if available.
- DO call the Project Manager or field team leader if unexpected conditions are encountered and at least twice during the workday to update them. Even if everything is fine and there are no questions, call or text with an update. It is also recommended to call when sampling is winding down for the day to make sure that the work plan has been fully implemented and there are no additional tasks to complete.
- DO have the numbers for laboratory, vehicle rental, and equipment rental providers readily available while in the field.
- DO decontaminate any heavy equipment used for the advancement of sampling devices by steam cleaning or high pressure/hot water wash prior to and between sample locations. This would include, but is not limited to auger flights,

drill rods, backhoe buckets and other respective accessories.

- DO review and count the sample bottles and compare to the COC prior to leaving the site.
- DO record sampler type (e.g., macrocore, split spoon, etc.) and boring method (e.g., direct push, hammer, etc.) in the field book.
- DO record the hammer weight, the distance of the hammer drop and the method for hammer lift (i.e., cathead and rope, hydraulic, etc.) in the field book at least once per day when collecting split-spoon samples with a drill rig.

DO NOTs:

- DO NOT sign anything other than the COC in the field. This includes disposal documentation, statements, etc; call the Project Manager if there is an issue.
- DO NOT use non-indelible ink to label samples or record field notes – if the field book gets wet, notes become illegible.
- DO NOT include any upper soils which may "fall" as a result of the open borehole caving in (slough) when recording recovery.
- DO NOT use general terms such as "Fill" or "Till" as a sole description for layers – always give detailed description of soil components

Attachment D:

SOP Modifications for PFAS

Due to the pervasive nature of PFAS in various substances routinely used during sampling and the need to mitigate potential cross-contamination or sampling bias to ensure representative data are collected, special care should be taken when sampling for PFAS. The following table highlights the required modifications to this SOP when sampling for PFAS.

	PFAS Sampling Protocols
SOP Section Number	Modifications to SOP
1.3	• Do not use equipment utilizing Teflon® during sample handling or mobilization/demobilization. This includes waterproof/resistant paper products, certain personal protective equipment (PPE) (see below), and Teflon® tape.
	 Blue Ice® (chemical ice packs) must not be used to cool samples or be used in sample coolers. Regular ice in Ziploc® bags can be used. Do not use low density polyethylene (LDPE)¹ or glass sample
	containers or containers with Teflon-lined lids. HDPE or polypropylene containers are acceptable for sample storage. HDPE or polypropylene caps are acceptable.
	 Do not use aluminum foil. Waterproof field notes, plastic clipboards and spiral bound notebooks should not be used. Field notes should be recorded on loose paper field forms maintained in aluminum or Masonite clipboards. Field notes should be attached to the project-specific field notes or folder upon returning to the office. Avoid using waterproof labels for sample bottles. The use of paper labels covered with clear tape or placed in Ziploc® bags to avoid moisture on the sample label is acceptable.
	• Do not use Post-It Notes during sample handling or mobilization/ demobilization.
	• Refer to TRC's SOP ECR-010 Equipment Decontamination for PFAS-specific decontamination protocols. Ensure that PFAS-free water is used during the decontamination procedure.
1.5	 Always consult the Site Specific Health and Safety Plan (HASP) prior to conducting field work. The following considerations should be made with regards to field preparation during PFAS sampling: Tyvek® suits should not be worn during PFAS sampling events. Cotton coveralls may be worn.
	 Boots and other field clothing containing Gore-Tex[™] or other waterproof/resistant material should not be worn. This includes rain gear. Boots made with polyurethane and polyvinyl chloride (PVC) are acceptable.
	 Stain resistant clothing should not be worn. Food and drink should not be allowed within the exclusion area. Pre-wrapped food or snacks should not be in the possession of sampling personnel during sampling. Bottled water and hydration drinks (e.g., Gatorade®) may be consumed in the staging area only. Personnel involved with sample collection and handling should
	wear nitrile gloves at all times while collecting and handling

	PFAS Sampling Protocols					
SOP Section Number	Modifications to SOP					
	 samples or sampling equipment. Avoid handling unnecessary items with nitrile gloves. A new pair of gloves must be donned prior to collecting each sample. Wash hands with Alconox or Liquinox and deionized water after leaving values before setting up at a soil sempling leastion. 					
1.6	A usid meaning slothing low dend with folging of the set					
1.6	 Avoid wearing clothing laundered with fabric softeners. Avoid wearing new clothing (recommended 6 washings since purchase). Clothing made of cotton is preferred. Avoid using cosmetics, moisturizers, hand creams, or other related products as part of cleaning/showering on the day of sampling. Avoid using sunscreens or insect repellants that are not natural or chemical free. If installing borings for PFAS sampling, assume the surface soil is contaminated with PFAS and remove the top six inches and transfer to drums prior to installing the borings. Clear an area of at least 1.5 feet by 1.5 feet. Keep all site surface soil in one drum, if possible. It is important to minimize PFAS in the surface soil from getting into the boring during soil sampling or well construction. If sampling for PFAS under a roadway, move the dense aggregate subgrade out of the way prior to sampling. Efficient and consistent homogenization procedures must be performed on soil samples; this is critical due to the small mass used by the laboratory. Do not homogenize soil in aluminum pie pans; use a decontaminated stainless steel bowl. 					
2.2	 LDPE and/or glass containers should not be used for sampling. Teflon®-lined caps should also not be used during sample collection. Instead, HDPE or polypropylene containers are acceptable for sample storage. HDPE or polypropylene caps are acceptable. Do not homogenize soil in aluminum pie pans. Use a decontaminated stainless steel bowl. Stainless steel tools should not be wrapped in aluminum foil after decontaminating prior to and in between uses. Homogenize the soil sample in a decontaminated, stainless steel bowl and place in an appropriate laboratory-provided sample container (as listed above) following the collection of VOC, VPH or GRO samples. 					
2.2.3	 Do not use Teflon[®] liners for direct push sampling methods. Cellulose acetate butyrate (CAB) liners are acceptable. 					
2.2.7	• Homogenize the soil sample in a decontaminated, stainless steel bowl and place in an appropriate laboratory-provided sample container (as listed above) following the collection of VOC, VPH or GRO samples.					
2.3	• Samples for PFAS analysis must be shipped at <10°C. Standard coolers are acceptable. Keep high-concentration PFAS samples in separate coolers from low-concentration PFAS samples.					

¹PFAS have been used as an additive in the manufacturing of LDPE to smooth rough surfaces.

Attachment E:

Explanation of Common Subsurface Sampling Technologies

Hand Augering

Hand augers may be used to advance boreholes and collect soil samples in shallow subsurface intervals. Often, 4-inch diameter stainless steel auger buckets with cutting heads are used. The auger is advanced by simultaneously pushing and turning using an attached T-handle with extensions (if needed).

The practical depth of investigation using a hand auger largely depends upon the soil properties and depth of investigation. In sand, augering is typically easy to perform, but the depth of collection is limited to the depth at which the sand begins to flow or collapse. The use of hand augers may be of limited use in soils containing large amounts of unnatural fill (e.g., brick, slag, concrete), coarse gravel and cobbles (or larger grain size), and in tight clays or cemented sands. In these soil types, it becomes more difficult to recover a sample due to increased friction and torque of the hand auger extensions as the depth increases. At some point, these problems become so severe that alternate methods (i.e., power equipment) must be used.

Auger holes are advanced one bucket at a time until the appropriate sample depth is achieved. When the sample depth is reached, the bucket used to advance the hole is removed and decontaminated or a clean bucket is attached. The clean auger bucket is then placed in the hole and filled with soil to make up the sample and then carefully removed.

Direct Push

Direct-push sampling methods are used primarily to collect shallow and deep subsurface soil samples. Soil sampling probes may range from simple hand tools to truck-mounted or track-mounted hydraulically operated rigs. The sampling tool is hydraulically driven into the soil, filling the tube, and withdrawn. All of the sampling tools involve the collection and retrieval of the soil sample within a thin-walled liner. The following sections describe two specific sampling methods using direct-push techniques, along with details specific to each method.

- <u>Macro-Core[®] Sampler (Direct-push)</u> The Macro-Core[®] (MC[®]) sampler is a solid barrel, direct-push sampler equipped with a piston-rod point assembly used primarily for collection of either continuous or depth-discrete subsurface soil samples. Other lengths are available, the standard MC[®] sampler comes in lengths of 48 or 60 inches (1219 or 1524 mm) with an outside diameter (OD) of 2.25 inches (57 mm). The MC[®] sampler is capable of recovering a discrete sample the length of the sample core used with a diameter of 1.5 inches (38 mm) contained inside a removable liner. The resultant sample volume is an approximate maximum of 1400 mL (for a 48-inch sampler). The MC[®] sampler may be used in either an open-tube or closed-point configuration.
- <u>Dual-tube Soil Sampling System (Direct-push)</u> The Dual-tube soil sampling system is a direct-push system for collecting continuous core samples of unconsolidated materials from within a sealed outer casing of 2.25-inch (57 mm) to 6-inch (152 mm) OD probe rod. For the 2.25-inch OD probe rods, the samples are collected and retrieved within a liner that is threaded onto the leading end of a string of 1.25-inch (32 mm) OD diameter probe rods inserted into the bottom of the outer casing. Collected samples have a volume of up to 800 mL in the form of a 1.125-inch x 48-inch (29 mm x 1219 mm) core. In addition to the 48-inch length, nominal liner lengths include 36 inches, 1 meter, and 60 inches. Use of this method allows for collection of a continuous core inside a cased hole, minimizing or preventing cross contamination between different intervals during sample collection. The outer casing is

advanced, one core length at a time, with only the inner probe rod and core being removed and replaced between samples. If the sampling zone of interest begins at some depth below ground surface, a solid drive tip must be used to drive the dual-tube assembly and core to its initial sample depth.

Split Spoon

All split-spoon samplers, regardless of size, are basically split cylindrical barrels that are threaded on each end. The leading end is held together with a beveled threaded collar that functions as a cutting shoe. The other end is held together with a threaded collar that serves as the stub used to attach the spoon to a string of drill rod.

• <u>Standard Split Spoon</u> - A drill rig auger is used to advance a borehole to the target depth. The drill auger string is then removed and a standard split spoon is attached to a string of drill rod. Split spoons used for soil sampling must be constructed of hardened carbon steel and are typically 2.0 inches OD (1.5 inches inside diameter) and 18 inches to 24 inches in length. Other diameters and lengths are common and may be used if constructed of the proper material. After the spoon is attached to the string of drill rod, it is lowered into the borehole. The safety hammer is then used to drive the split spoon into the soil at the bottom of the borehole. After the split spoon has been driven into the soil, filling the spoon, it is retrieved to the surface, where it is removed from the drill rod string and opened for sample acquisition.

Shelby Tubes

Shelby tubes, also referred to generically as thin-walled push tubes or Acker thin-walled samplers, are used to collect subsurface soil samples in cohesive soils and clays during drilling activities. In addition to samples for chemical analyses, Shelby tubes are also used to collect relatively undisturbed soil samples for geotechnical analyses of physical properties such as shear strength, grain size distribution, density, hydraulic conductivity and permeability, to support engineering design, construction, and hydrogeologic characterizations at hazardous waste and other sites.

A typical Shelby tube is 30 inches in length, has a 3.0-inch OD (2.875-inch inside diameter) and may be constructed of steel, stainless steel, galvanized steel, or brass. They are typically attached to push heads constructed with a ball check to aid in holding the sample in the tube during retrieval. If used for collecting samples for chemical analyses, it must be constructed of stainless steel. If used for collecting samples for standard geotechnical parameters, any material is acceptable. To collect a sample, the tube is attached to a string of drill rod and is lowered into the borehole, where the sampler is then pressed into the undisturbed material by hydraulic force from the drill rig.

Sonic Drilling

Sonic drilling/rotary vibratory drilling employs the use of high-frequency, resonant energy to advance a core barrel or casing into subsurface formations. Although sonic drilling is not technically a direct-push method of soil sampling, it is similar because soil sample collection from cores of recovered unconsolidated soil would follow the same procedures as described for direct-push methodologies.

Sonic drilling is different than conventional drilling, as sonic drilling minimizes the friction between the borehole wall and the drilling tool by maintaining the resonance of the drill string

with a sonic drill head. It also allows for drilling in areas where standard DPT would be refused, potentially requiring multiple step-outs and/or not sampling the desired area. It is also generally faster to advance than HSA or DPT. Typically, the drilling method utilizes dual casings that independently resonate into the subsurface with an inner core barrel that is overrun by an outer casing, similar to dual tube DPT sampling.

Excavator

A backhoe or excavator can be used to assist with soil sampling. This method is typically used during remedial excavation activities (to collect floor and sidewall samples within the excavation), test pit installation, or trenching operations. Test pit excavations are commonly completed to allow for greater observation of physical soil characteristics (e.g., stockpiles) and/or to further investigate buried suspect areas of concern (e.g., petroleum tanks, drums, waste, fill).

5/4/23

MRC-9: Viewpointe B) J + Willaw Are (see conditionates) MRC-10: 6097 Pinole Valley Rd MRC-10: 4191 Appian Way MRC-12: 1920 Beza (Reek Rd (EBMUD Beze (Reek Styping Ares) MRC-4: Christing Road (see courdinates) (Juross RR) MRC-8: Creckett Flow trailhead (see courdinates) (Juross RR) MRC-3: MCEwen Road (see courdinates) MRC-1: SUSANA Park MRC-1: SUSANA Park MRC-1: SUSANA Park MRC-1: 18 Commo Del Sol (aright nation Act to) MRC-2: 1820/1815 Franklin (Juryan Rd (Uney 2Rd) MRC-5: Waterbird Regional Preserve (EBRPD) 5/5/23 MRC-7: West 7th St + West Milltary (field next to Tace Bell)

Photograph Log Martinez Refinery Soil Sampling May 4-5, 2023

TRC Job No.	Photographs Taken By:	Page No.	A TOC	
537895	TRC	1 of 3	VIRC	

Photograph Log Martinez Refinery Soil Sampling May 4-5, 2023

TRC Job No.	Photographs Taken By:	Page No.	A TOC	
537895	TRC	2 of 3	VIRC	

Photograph Log Martinez Refinery Soil Sampling May 4-5, 2023

TRC Job No.	Photographs Taken By:	Page No.	
537895	TRC	3 of 3	

Appendix D. Laboratory Analytical Report for May 2023 Soil Data

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Laura Tait TRC Environmental Corporation 1850 Gateway Blvd Suite 1000 Concord, California 94520 Generated 5/25/2023 3:32:01 PM Revision 1

JOB DESCRIPTION

Martinez Refinery

JOB NUMBER

320-99906-1

Eurofins Sacramento 880 Riverside Parkway West Sacramento CA 95605

Eurofins Sacramento

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northern California, LLC Project Manager.

Authorization

Maint R 5 Smit

Generated 5/25/2023 3:32:01 PM Revision 1 1

Authorized for release by Micah Smith, Project Manager II Micah.Smith@et.eurofinsus.com (916)374-4302

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	10
QC Sample Results	18
QC Association Summary	22
Lab Chronicle	25
Certification Summary	30
Method Summary	31
Sample Summary	32
Chain of Custody	33
Receipt Checklists	37

3 4

5

Qualifiers

Metals	
Qualifier	Qualifier Description
^2	Calibration Blank (ICB and/or CCB) is outside acceptance limits.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
F1	MS and/or MSD recovery exceeds control limits.

Glossary

F1	MS and/or MSD recovery exceeds control limits.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	8
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	9
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 320-99906-1

Laboratory: Eurofins Sacramento

Narrative

Job Narrative 320-99906-1

Comments

No additional comments.

Revision

The report being provided is a revision of the original report sent on 5/16/2023. The report (revision 1) was revised for Method 7199 (soil) to accommodate the client's request for a nominal reporting limit (RL) of 200 ug/kg in lieu of the laboratory's default RL (400 ug/kg).

Receipt

The samples were received on 5/4/2023 7:30 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.1° C.

HPLC/IC

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Method 6010B: The post digestion spike % recovery for Thallium associated with batch 320-673254 was outside of control limits. The associated sample is: (320-99906-A-1-A PDS).

Method 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 320-672930 and analytical batch 320-673254 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 6010B: The instrument blank (CCB) for analytical batch 320-673254 contained Aluminum (AI) greater than one-half the reporting limit (RL), and were not re-analyzed because sample results were 10x greater than the CCB or Method blank. The data have been qualified and reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 320-99906-1

Client Sample ID: MRC-9

3 4 5

Lab Sample ID: 320-99906-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	6.1	F1	2.4		mg/Kg	1	₽	6010B	Total/NA
Barium	100		1.2		mg/Kg	1	₽	6010B	Total/NA
Beryllium	0.73	F1	0.24		mg/Kg	1	₽	6010B	Total/NA
Aluminum	9300		24		mg/Kg	1	₽	6010B	Total/NA
Chromium	24		0.59		mg/Kg	1	₽	6010B	Total/NA
Cobalt	6.3		0.59		mg/Kg	1	₽	6010B	Total/NA
Copper	14		1.8		mg/Kg	1	₽	6010B	Total/NA
Lead	15		1.2		mg/Kg	1	₽	6010B	Total/NA
Nickel	23		1.2		mg/Kg	1	₽	6010B	Total/NA
Vanadium	29		0.59		mg/Kg	1	₽	6010B	Total/NA
Zinc	64	F1	2.4		mg/Kg	1	₽	6010B	Total/NA
pH adj. to 25 deg C	6.5		0.1		SU	1		9045C	Soluble

Client Sample ID: MRC-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	5.1		2.2	1	mg/Kg	1	¢	6010B	Total/NA
Barium	130		1.1	I	mg/Kg	1	¢	6010B	Total/NA
Beryllium	1.2		0.22	I	mg/Kg	1	₽	6010B	Total/NA
Aluminum	15000	^2	22	1	mg/Kg	1	¢	6010B	Total/NA
Chromium	27		0.55	I	mg/Kg	1	₽	6010B	Total/NA
Cobalt	11		0.55	I	mg/Kg	1	₽	6010B	Total/NA
Copper	30		1.6	1	mg/Kg	1	₽	6010B	Total/NA
Lead	10		1.1	I	mg/Kg	1	₽	6010B	Total/NA
Nickel	30		1.1	I	mg/Kg	1	₽	6010B	Total/NA
Vanadium	59		0.55	1	mg/Kg	1	₽	6010B	Total/NA
Zinc	79		2.2	I	mg/Kg	1	₽	6010B	Total/NA
pH adj. to 25 deg C	6.9		0.1	:	SU	1		9045C	Soluble

Client Sample ID: MRC-11

Lab Sample ID: 320-99906-3

Lab Sample ID: 320-99906-4

Lab Sample ID: 320-99906-2

Analyte	Result Qua	alifier RL	MDL Unit	Dil Fac	D	Method	Prep Type
Arsenic	5.7	2.5	mg/Kg	1	¢	6010B	Total/NA
Barium	98	1.2	mg/Kg	1	₽	6010B	Total/NA
Beryllium	0.64	0.25	mg/Kg	1	¢	6010B	Total/NA
Aluminum	10000 ^2	25	mg/Kg	1	₽	6010B	Total/NA
Chromium	29	0.62	mg/Kg	1	¢	6010B	Total/NA
Cobalt	7.9	0.62	mg/Kg	1	¢	6010B	Total/NA
Copper	23	1.9	mg/Kg	1	₽	6010B	Total/NA
Lead	13	1.2	mg/Kg	1	₽	6010B	Total/NA
Nickel	31	1.2	mg/Kg	1	₽	6010B	Total/NA
Vanadium	34	0.62	mg/Kg	1	¢	6010B	Total/NA
Zinc	59	2.5	mg/Kg	1	₽	6010B	Total/NA
pH adj. to 25 deg C	7.1	0.1	SU	1		9045C	Soluble

Client Sample ID: MRC-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	3.9		2.5		mg/Kg	1	¢	6010B	Total/NA
Barium	86		1.3		mg/Kg	1	¢	6010B	Total/NA
Beryllium	0.65		0.25		mg/Kg	1	¢	6010B	Total/NA
Aluminum	15000	^2	25		mg/Kg	1	¢	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Sacramento

Client Sample ID: MRC-12 (Continued)

Lab Sample ID: 320-99906-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	20		0.64		mg/Kg	1	₽	6010B	Total/NA
Cobalt	5.1		0.64		mg/Kg	1	₽	6010B	Total/NA
Copper	7.9		1.9		mg/Kg	1	¢	6010B	Total/NA
Lead	6.6		1.3		mg/Kg	1	¢	6010B	Total/NA
Nickel	14		1.3		mg/Kg	1	¢	6010B	Total/NA
Vanadium	30		0.64		mg/Kg	1	¢	6010B	Total/NA
Zinc	32		2.5		mg/Kg	1	¢	6010B	Total/NA
pH adj. to 25 deg C	7.3		0.1		SU	1		9045C	Soluble
Client Sample ID: MRC-4						Lab	Sa	mple ID:	320-99906-

Client Sample ID: MRC-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	24		2.7		mg/Kg	1	☆	6010B	Total/NA
Barium	110		1.3		mg/Kg	1	¢	6010B	Total/NA
Beryllium	0.58		0.27		mg/Kg	1	₽	6010B	Total/NA
Aluminum	9800	^2	27		mg/Kg	1	₽	6010B	Total/NA
Chromium	87		0.66		mg/Kg	1	₽	6010B	Total/NA
Cobalt	16		0.66		mg/Kg	1	¢	6010B	Total/NA
Copper	36		2.0		mg/Kg	1	₽	6010B	Total/NA
Lead	23		1.3		mg/Kg	1	₽	6010B	Total/NA
Nickel	200		1.3		mg/Kg	1	¢	6010B	Total/NA
Vanadium	30		0.66		mg/Kg	1	₽	6010B	Total/NA
Zinc	56		2.7		mg/Kg	1	₽	6010B	Total/NA
pH adj. to 25 deg C	6.9		0.1		SU	1		9045C	Soluble

Client Sample ID: MRC-8

Lab Sample ID: 320-99906-6

Analyte	Result (Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	16	2.3		mg/Kg	1	₽	6010B	Total/NA
Barium	130	1.2		mg/Kg	1	¢	6010B	Total/NA
Beryllium	0.77	0.23		mg/Kg	1	₽	6010B	Total/NA
Aluminum	19000 ^	^2 23		mg/Kg	1	¢	6010B	Total/NA
Chromium	64	0.58		mg/Kg	1	₽	6010B	Total/NA
Cobalt	15	0.58		mg/Kg	1	₽	6010B	Total/NA
Copper	48	1.7		mg/Kg	1	₽	6010B	Total/NA
Lead	32	1.2		mg/Kg	1	₽	6010B	Total/NA
Nickel	65	1.2		mg/Kg	1	₽	6010B	Total/NA
Vanadium	70	0.58		mg/Kg	1	¢	6010B	Total/NA
Zinc	88	2.3		mg/Kg	1	₽	6010B	Total/NA
pH adj. to 25 deg C	7.2	0.1		SU	1		9045C	Soluble

Client Sample ID: MRC-3

Lab Sample ID: 320-99906-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	11		2.1		mg/Kg	1	¢	6010B	Total/NA
Barium	150		1.1		mg/Kg	1	¢	6010B	Total/NA
Beryllium	0.93		0.21		mg/Kg	1	¢	6010B	Total/NA
Aluminum	17000	^2	21		mg/Kg	1	¢	6010B	Total/NA
Chromium	46		0.54		mg/Kg	1	¢	6010B	Total/NA
Cobalt	17		0.54		mg/Kg	1	¢	6010B	Total/NA
Copper	44		1.6		mg/Kg	1	₽	6010B	Total/NA
Lead	31		1.1		mg/Kg	1	¢	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Sacramento

5

Detection Summary

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Client Sample ID: MRC-3 (Continued)

Job ID: 320-99906-1

Lab Sample ID: 320-99906-7

Lab Sample ID: 320-99906-8

Lab Sample ID: 320-99906-9

Lab Sample ID: 320-99906-10

Lab Sample ID: 320-99906-11

Analyte Nickel	Result	Qualifier	RL 1.1	MDL	Unit mg/Kg	Dil Fac1	D ☆	Method 6010B	Prep Type Total/NA
Vanadium	60		0.54		mg/Kg	1	₽	6010B	Total/NA
Zinc	210		2.1		mg/Kg	1	₽	6010B	Total/NA
pH adj. to 25 deg C	6.9		0.1		SU	1		9045C	Soluble

Client Sample ID: MRC-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	7.1		2.5		mg/Kg	1	¢	6010B	Total/NA
Barium	99		1.2		mg/Kg	1	₽	6010B	Total/NA
Beryllium	0.57		0.25		mg/Kg	1	¢	6010B	Total/NA
Aluminum	9200	^2	25		mg/Kg	1	₽	6010B	Total/NA
Chromium	22		0.62		mg/Kg	1	¢	6010B	Total/NA
Cobalt	7.1		0.62		mg/Kg	1	₽	6010B	Total/NA
Copper	20		1.9		mg/Kg	1	₽	6010B	Total/NA
Lead	82		1.2		mg/Kg	1	¢	6010B	Total/NA
Nickel	19		1.2		mg/Kg	1	₽	6010B	Total/NA
Vanadium	30		0.62		mg/Kg	1	¢	6010B	Total/NA
Zinc	160		2.5		mg/Kg	1	₽	6010B	Total/NA
pH adj. to 25 deg C	5.9		0.1		SU	1		9045C	Soluble

Client Sample ID: MRC-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	5.4		2.4		mg/Kg	1	¢	6010B	Total/NA
Barium	90		1.2		mg/Kg	1	₽	6010B	Total/NA
Beryllium	0.55		0.24		mg/Kg	1	¢	6010B	Total/NA
Aluminum	8900	^2	24		mg/Kg	1	₽	6010B	Total/NA
Chromium	16		0.59		mg/Kg	1	¢	6010B	Total/NA
Cobalt	6.5		0.59		mg/Kg	1	₽	6010B	Total/NA
Copper	11		1.8		mg/Kg	1	₽	6010B	Total/NA
Lead	18		1.2		mg/Kg	1	¢	6010B	Total/NA
Nickel	13		1.2		mg/Kg	1	₽	6010B	Total/NA
Vanadium	30		0.59		mg/Kg	1	¢	6010B	Total/NA
Zinc	41		2.4		mg/Kg	1	¢	6010B	Total/NA
pH adj. to 25 deg C	6.0		0.1		SU	1		9045C	Soluble

Client Sample ID: Equipment Blank

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Ргер Туре
Lead	0.0063	0.0050	mg/L	1	6010B	Total/NA

Client Sample ID: Dup-1

-								
Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac	D	Method	Prep Type
Arsenic	14		2.3	mg/Kg	1	₽	6010B	Total/NA
Barium	130		1.1	mg/Kg	1	₽	6010B	Total/NA
Beryllium	0.69		0.23	mg/Kg	1	¢	6010B	Total/NA
Aluminum	18000	^2	23	mg/Kg	1	₽	6010B	Total/NA
Chromium	56		0.57	mg/Kg	1	¢	6010B	Total/NA
Cobalt	15		0.57	mg/Kg	1	¢	6010B	Total/NA
Copper	43		1.7	mg/Kg	1	₽	6010B	Total/NA
Lead	25		1.1	mg/Kg	1	₽	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Sacramento

Detection Summary

Client Sample ID: Dup-1 (Continued)

Job ID: 320-99906-1

5

Analyte Nickel	Result 60	Qualifier	RL 1.1	MDL	Unit mg/Kg	Dil Fac	D ☆	Method 6010B	Prep Type Total/NA
Vanadium	64		0.57		mg/Kg	1	¢	6010B	Total/NA
Zinc	82		2.3		mg/Kg	1	₽	6010B	Total/NA
pH adj. to 25 deg C	6.0		0.1		SU	1		9045C	Soluble

Client Sample ID: MRC-14

Lab Sample ID: 320-99906-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	8.5		2.3		mg/Kg	1	₽	6010B	Total/NA
Barium	86		1.1		mg/Kg	1	₽	6010B	Total/NA
Beryllium	0.88		0.23		mg/Kg	1	₽	6010B	Total/NA
Aluminum	14000	^2	23		mg/Kg	1	₽	6010B	Total/NA
Chromium	35		0.57		mg/Kg	1	₽	6010B	Total/NA
Cobalt	9.9		0.57		mg/Kg	1	₽	6010B	Total/NA
Copper	29		1.7		mg/Kg	1	₽	6010B	Total/NA
Lead	33		1.1		mg/Kg	1	₽	6010B	Total/NA
Nickel	32		1.1		mg/Kg	1	₽	6010B	Total/NA
Vanadium	54		0.57		mg/Kg	1	₽	6010B	Total/NA
Zinc	270		2.3		mg/Kg	1	₽	6010B	Total/NA
pH adj. to 25 deg C	5.7		0.1		SU	1		9045C	Soluble

Page 9 of 38

This Detection Summary does not include radiochemical test results.

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Job ID: 320-99906-1

Lab Sample ID: 320-99906-1

Date Collected: 05/04/23 08:10 Date Received: 05/04/23 19:30

Client Sample ID: MRC-9

Matrix: Solid
Percent Solids: 85.7

5 6

									13. 00.7
	m, Hexav	alent (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		240	230	ug/Kg	<u></u>	05/09/23 02:00	05/09/23 13:32	10
Method: SW846 6010B - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.1	F1	2.4		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Barium	100		1.2		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Beryllium	0.73	F1	0.24		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Aluminum	9300		24		mg/Kg	₽	05/08/23 06:30	05/08/23 15:57	1
Chromium	24		0.59		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Cobalt	6.3		0.59		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Copper	14		1.8		mg/Kg	₽	05/08/23 06:30	05/08/23 15:57	1
Lead	15		1.2		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Molybdenum	ND	F1	2.4		mg/Kg	₽	05/08/23 06:30	05/08/23 15:57	1
Nickel	23		1.2		mg/Kg	₽	05/08/23 06:30	05/08/23 15:57	1
Selenium	ND	F1	2.4		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Vanadium	29		0.59		mg/Kg	₽	05/08/23 06:30	05/08/23 15:57	1
Zinc	64	F1	2.4		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	14.3		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	85.7		0.1		%			05/05/23 14:27	1
General Chemistry - Soluble	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	6.5		0.1		SU		•	05/09/23 11:24	1
Client Semple ID: MBC 10							oh Somol	220.00	006 J
Data Collected: 05/04/22 09:49							an Sampi	- ID. 320-33	1300-2 vi Solid
Date Conected, 05/04/25 00:40								IVIDLED	. ວບເເບ

Date Collected: 05/04/23 08:48 Date Received: 05/04/23 19:30

Method: SW846 7199 - Ch	romium, Hexav	alent (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		220	210	ug/Kg	☆	05/09/23 02:00	05/09/23 11:08	10
	letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.1		2.2		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Barium	130		1.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Beryllium	1.2		0.22		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Aluminum	15000	^2	22		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Chromium	27		0.55		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Cobalt	11		0.55		mg/Kg	₽	05/08/23 06:30	05/08/23 16:17	1
Copper	30		1.6		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Lead	10		1.1		mg/Kg	₽	05/08/23 06:30	05/08/23 16:17	1
Molybdenum	ND		2.2		mg/Kg	₽	05/08/23 06:30	05/08/23 16:17	1
Nickel	30		1.1		mg/Kg	₽	05/08/23 06:30	05/08/23 16:17	1
Selenium	ND		2.2		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Vanadium	59		0.55		mg/Kg	₽	05/08/23 06:30	05/08/23 16:17	1
Zinc	79		2.2		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1

Eurofins Sacramento

Percent Solids: 87.8

Client: TRC Environmental Corporation

Job ID: 320-99906-1

Project/Site: Martinez Refinery									
Client Sample ID: MRC-10						L	ab Sample	D: 320-99	906-2
Date Collected: 05/04/23 08:48								Matrix	: Solid
Date Received: 05/04/23 19:30								Percent Solid	ls: 87.8
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	12.2		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	87.8		0.1		%			05/05/23 14:27	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
	6.9		0.1		50			05/09/23 11:24	1
Client Sample ID: MRC-11						L	ab Sample	e ID: 320-99	906-3
Date Collected: 05/04/23 09:18								Matrix	C: Solid
Date Received: 05/04/23 19:30								Percent Solid	IS: 81.3
Method: SW846 7199 - Chromiu	m, Hexav	alent (IC)				_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		250	240	ug/Kg	¢	05/09/23 02:00	05/09/23 11:20	10
Method: SW846 6010B - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.7		2.5		mg/Kg	¢	05/08/23 06:30	05/08/23 16:20	1
Barium	<mark>9</mark> 8		1.2		mg/Kg	☆	05/08/23 06:30	05/08/23 16:20	1
Beryllium	0.64		0.25		mg/Kg	₿	05/08/23 06:30	05/08/23 16:20	1
Aluminum	10000	^2	25		mg/Kg	☆	05/08/23 06:30	05/08/23 16:20	1
Chromium	29		0.62		mg/Kg	¢	05/08/23 06:30	05/08/23 16:20	1
Cobalt	7.9		0.62		mg/Kg	¢	05/08/23 06:30	05/08/23 16:20	1
Copper	23		1.9		mg/Kg	¢	05/08/23 06:30	05/08/23 16:20	1
Lead	13		1.2		mg/Kg	☆	05/08/23 06:30	05/08/23 16:20	1
Molybdenum	ND		2.5		mg/Kg	₿	05/08/23 06:30	05/08/23 16:20	1
Nickel	31		1.2		mg/Kg	☆	05/08/23 06:30	05/08/23 16:20	1
Selenium	ND		2.5		mg/Kg	¢	05/08/23 06:30	05/08/23 16:20	1
Vanadium	34		0.62		mg/Kg	\$	05/08/23 06:30	05/08/23 16:20	1
	59		2.5		mg/Kg	¢	05/08/23 06:30	05/08/23 16:20	1
General Chemistry		.				_			
Analyte	Result	Qualifier		MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	18.7		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	81.3		0.1		%			05/05/23 14:27	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	7.1		0.1		SU			05/09/23 11:24	1
Client Sample ID: MRC-12						L	ab Sample	D: 320-99	906-4
Date Collected: 05/04/23 09:57								Matrix	: Solid
Date Received: 05/04/23 19:30								Percent Solid	ls: 79.3
Method: SW846 /199 - Chromiu	m, Hexav Result	alent (IC) Qualifier	RI	мы	Unit	п	Prenared	Analyzed	Dil Fac
Chromium bexavalent		Quaimer	260	250		— <u>–</u>	05/09/23 02:00	05/09/23 11:32	10
			200	200	-9,1,9	*	30,00,20 02.00	30,00/20 TI.0Z	10
Method: SW846 6010B - Metals	(ICP)						_		
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Arsenic	3.9		2.5		mg/Kg	¢	05/08/23 06:30	05/08/23 16:23	1
Barium	86		1.3		mg/Kg	₽	05/08/23 06:30	05/08/23 16:23	1

Eurofins Sacramento

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Job ID: 320-99906-1

Percent Solids: 79.3

Matrix: Solid

Lab Sample ID: 320-99906-4

Client Sample ID: MRC-12 Date Collected: 05/04/23 09:57 Date Received: 05/04/23 19:30

0.65				0		ricpurcu	7 (11 al y 20 a	Diriac
		0.25		mg/Kg	<u></u>	05/08/23 06:30	05/08/23 16:23	1
15000	^2	25		mg/Kg	₿	05/08/23 06:30	05/08/23 16:23	1
20		0.64		mg/Kg	☆	05/08/23 06:30	05/08/23 16:23	1
5.1		0.64		mg/Kg	☆	05/08/23 06:30	05/08/23 16:23	1
7.9		1.9		mg/Kg	₽	05/08/23 06:30	05/08/23 16:23	1
6.6		1.3		mg/Kg	₽	05/08/23 06:30	05/08/23 16:23	1
ND		2.5		mg/Kg	¢	05/08/23 06:30	05/08/23 16:23	1
14		1.3		mg/Kg	₽	05/08/23 06:30	05/08/23 16:23	1
ND		2.5		mg/Kg	₽	05/08/23 06:30	05/08/23 16:23	1
30		0.64		mg/Kg	¢	05/08/23 06:30	05/08/23 16:23	1
32		2.5		mg/Kg	₽	05/08/23 06:30	05/08/23 16:23	1
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
20.7		0.1		%			05/05/23 14:27	1
79.3		0.1		%			05/05/23 14:27	1
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
7.3		0.1		SU			05/09/23 11:24	1
	20 5.1 7.9 6.6 ND 14 ND 30 32 Result 20.7 79.3 Result 7.3	20 5.1 7.9 6.6 ND 14 ND 30 32 Result Qualifier 20.7 79.3 Result Qualifier 7.3	20 0.64 5.1 0.64 7.9 1.9 6.6 1.3 ND 2.5 14 1.3 ND 2.5 30 0.64 32 2.5 Result Qualifier 20.7 0.1 79.3 0.1 Result Qualifier Result Qualifier Result Qualifier Result Qualifier 0.1 0.1	20 0.64 5.1 0.64 7.9 1.9 6.6 1.3 ND 2.5 14 1.3 ND 2.5 30 0.64 32 2.5 Result Qualifier RL MDL 79.3 0.1 Result Qualifier RL MDL 7.3 0.1 0.1	20 0.64 mg/Kg 5.1 0.64 mg/Kg 7.9 1.9 mg/Kg 6.6 1.3 mg/Kg ND 2.5 mg/Kg 14 1.3 mg/Kg 30 0.64 mg/Kg 32 2.5 mg/Kg Result Qualifier RL MDL Unit 79.3 0.1 % % Result Qualifier RL MDL Unit 7.3 0.1 % % %	20 0.64 mg/Kg Img/Kg 5.1 0.64 mg/Kg Img/Kg Img/Kg 7.9 1.9 mg/Kg Img/Kg Img/Kg Img/Kg 6.6 1.3 mg/Kg Img/Kg Img/K	20 0.64 mg/Kg © 05/08/23 06:30 5.1 0.64 mg/Kg © 05/08/23 06:30 7.9 1.9 mg/Kg © 05/08/23 06:30 6.6 1.3 mg/Kg © 05/08/23 06:30 ND 2.5 mg/Kg © 05/08/23 06:30 30 0.64 mg/Kg © 05/08/23 06:30 32 2.5 mg/Kg © 05/08/23 06:30 33 0.1 % © Prepared 79.3 0.1 % © Prepared 7.3 0.1 SU © Prepared	20 0.64 mg/Kg © 05/08/23 06:30 05/08/23 16:23 5.1 0.64 mg/Kg © 05/08/23 06:30 05/08/23 16:23 7.9 1.9 mg/Kg © 05/08/23 06:30 05/08/23 16:23 6.6 1.3 mg/Kg © 05/08/23 06:30 05/08/23 16:23 ND 2.5 mg/Kg © 05/08/23 06:30 05/08/23 16:23 30 0.64 mg/Kg © 05/08/23 06:30 05/08/23 16:23 32 2.5 mg/Kg © 05/08/23 06:30 05/08/23 16:23 32 2.5 mg/Kg © 05/08/23 06:30 05/08/23 16:23 32 0.1 % 0 05/08/23 06:30 05/08/23 16:23 32 0.1 % 0 05/08/23 06:30 05/08/23 16:23 33 0.1 % 0 0 0 0 79.3 0.1

Date Collected: 05/04/23 10:59

Date Received: 05/04/23 19:30

Lab Sample ID: 320-99906-5 Matrix: Solid Percent Solids: 75.3

Method: SW846 7199 - Chromiu	ım, Hexav	alent (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		270	250	ug/Kg	¢	05/09/23 02:00	05/09/23 11:44	10
_ Method: SW846 6010B - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	24		2.7		mg/Kg	₽	05/08/23 06:30	05/08/23 16:26	1
Barium	110		1.3		mg/Kg	₽	05/08/23 06:30	05/08/23 16:26	1
Beryllium	0.58		0.27		mg/Kg	¢	05/08/23 06:30	05/08/23 16:26	1
Aluminum	9800	^2	27		mg/Kg	₽	05/08/23 06:30	05/08/23 16:26	1
Chromium	87		0.66		mg/Kg	¢	05/08/23 06:30	05/08/23 16:26	1
Cobalt	16		0.66		mg/Kg	¢	05/08/23 06:30	05/08/23 16:26	1
Copper	36		2.0		mg/Kg	₽	05/08/23 06:30	05/08/23 16:26	1
Lead	23		1.3		mg/Kg	¢	05/08/23 06:30	05/08/23 16:26	1
Molybdenum	ND		2.7		mg/Kg	¢	05/08/23 06:30	05/08/23 16:26	1
Nickel	200		1.3		mg/Kg	☆	05/08/23 06:30	05/08/23 16:26	1
Selenium	ND		2.7		mg/Kg	¢	05/08/23 06:30	05/08/23 16:26	1
Vanadium	30		0.66		mg/Kg	¢	05/08/23 06:30	05/08/23 16:26	1
Zinc	56		2.7		mg/Kg	¢	05/08/23 06:30	05/08/23 16:26	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	24.7		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	75.3		0.1		%			05/05/23 14:27	1

Eurofins Sacramento

2

Client: TRC Environmental Corporation

Job ID: 320-99906-1

Project/Site: Martinez Refinery									
Client Sample ID: MRC-4						L	ab Sample	D: 320-99	9906-5
Date Collected: 05/04/23 10:59								Matrix	k: Solid
Date Received: 05/04/23 19:30								Percent Solid	ds: 75.3
Concret Chemistry Soluble									
General Chemistry - Soluble	Rosult	Qualifier	RI	мы	Unit	п	Prenared	Analyzed	Dil Fac
pH adi, to 25 deg C (SW846 9045C)	6.9		0.1		SU			05/09/23 11:24	1
					-				
Client Sample ID: MRC-8						L	ab Sample.	e ID: 320-99	9906-6
Date Collected: 05/04/23 11:26								Matrix	k: Solid
Date Received: 05/04/23 19:30								Percent Solid	ds: 84.5
Method: SW846 7199 - Chromiu	m. Hexav	alent (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		230	220	ug/Kg	¢	05/09/23 02:00	05/09/23 11:56	10
Method: SW846 6010B - Metals ((ICP)	Overlifier	ы	MDI	11	_	Durananad	Amelumed	
	Result	Qualifier	RL	MDL		<u> </u>		Analyzed	
Arsenic	10		2.3		mg/Kg	닷 光	05/08/23 06:30	05/08/23 10:29	1
Beryllium	0.77		0.23		mg/Kg	ж ж	05/08/23 06:30	05/08/23 16:29	1
Aluminum	19000	^2	23		ma/Ka		05/08/23 06:30	05/08/23 16:29	
Chromium	64	-	0.58		ma/Ka	Ť	05/08/23 06:30	05/08/23 16:29	1
Cobalt	15		0.58		ma/Ka	Ť	05/08/23 06:30	05/08/23 16:29	1
Copper	48		17		ma/Ka		05/08/23 06:30	05/08/23 16:29	1
Lead	32		12		ma/Ka	÷	05/08/23 06:30	05/08/23 16:29	1
Molybdenum	ND		2.3		ma/Ka	Ť	05/08/23 06:30	05/08/23 16:29	1
Nickel	65		12		ma/Ka		05/08/23 06:30	05/08/23 16:29	
Selenium	ND		2.3		ma/Ka	Ť	05/08/23 06:30	05/08/23 16:29	1
Vanadium	70		0.58		ma/Ka	÷	05/08/23 06:30	05/08/23 16:29	1
Zinc	88		2.3		mg/Kg	¢	05/08/23 06:30	05/08/23 16:29	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	15.5		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	84.5		0.1		%			05/05/23 14:27	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adi, to 25 deg C (SW846 9045C)	7.2		0.1		SU			05/09/23 11:24	1
					-				
Client Sample ID: MRC-3						L	ab Sample.	e ID: 320-99	9906-7
Date Collected: 05/04/23 12:00								Matrix	k: Solid
Date Received: 05/04/23 19:30								Percent Solic	ds: 89.8
Mothod: SW846 7199 Chromiu		alont (IC)							
Analyte	Rosult		RI	МП	Unit	п	Prenared	Analyzod	Dil Fac
Chromium bexavalent	ND	Quaimer	220	210			05/09/23 02:00	05/09/23 12:08	10
			220	210	uging	Ť	00/00/20 02.00	00/00/20 12:00	10
Method: SW846 6010B - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	11		2.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1
Barium	150		1.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1
Beryllium	0.93		0.21		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1
Aluminum	17000	^2	21		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1
Aluminum Chromium	17000 46	^2	21 0.54		mg/Kg mg/Kg	¢ ¢	05/08/23 06:30 05/08/23 06:30	05/08/23 16:32 05/08/23 16:32	1 1

Eurofins Sacramento
Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Client Sample ID: MRC-3 Date Collected: 05/04/23 12:00 Date Received: 05/04/23 19:30

Job	ID:	320-99906-1

Lab Sample ID: 320-99906-7 Matrix: Solid

Percent Solids: 89.8

5

6

Method: SW846 6010B - Metals (I	CP) (Co	ntinued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	44		1.6		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1
Lead	31		1.1		mg/Kg	₿	05/08/23 06:30	05/08/23 16:32	1
Molybdenum	ND		2.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1
Nickel	50		1.1		mg/Kg	₽	05/08/23 06:30	05/08/23 16:32	1
Selenium	ND		2.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1
Vanadium	60		0.54		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1
Zinc	210		2.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	10.2		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	89.8		0.1		%			05/05/23 14:27	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	6.9		0.1		SU			05/09/23 11:24	1
Client Sample ID: MRC-1 Date Collected: 05/04/23 12:28 Date Received: 05/04/23 19:30						L	ab Sample	e ID: 320-99 Matrix Percent Solic	906-8 : Solid s: 80.9
Method: SW846 7199 - Chromiun	n, Hexav	alent (IC)				_			
Analyte	Result	Qualifier		MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
	CP) Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	7.1		2.5		mg/Kg		05/08/23 06:30	05/08/23 16:41	1
Barium	99		1.2		mg/Kg	¢	05/08/23 06:30	05/08/23 16:41	1
Bervllium	0.57		0.25		mg/Kg	¢	05/08/23 06:30	05/08/23 16:41	1
Aluminum	9200	^2	25		ma/Ka		05/08/23 06:30	05/08/23 16:41	1
Chromium	22	_	0.62		ma/Ka	æ	05/08/23 06:30	05/08/23 16:41	1
Cobalt	7.1		0.62		mg/Kg	¢	05/08/23 06:30	05/08/23 16:41	1
Copper	20		1.9		ma/Ka		05/08/23 06:30	05/08/23 16:41	1
Lead	82		1.2		ma/Ka	æ	05/08/23 06:30	05/08/23 16:41	1
Molybdenum	ND		2.5		ma/Ka	÷	05/08/23 06:30	05/08/23 16:41	1
Nickel	19		12		ma/Ka		05/08/23 06:30	05/08/23 16:41	
Selenium	ND		25		ma/Ka	÷	05/08/23 06:30	05/08/23 16:41	1
Vanadium	30		0.62		ma/Ka	÷	05/08/23 06:30	05/08/23 16:41	1
Zinc	160		2.5		mg/Kg	¢	05/08/23 06:30	05/08/23 16:41	1
_ General Chemistrv									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	19.1		0.1		%		·	05/05/23 14:27	1
Percent Solids (ASTM D 2216)	80.9		0.1		%			05/05/23 14:27	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
nH adj. to 25 deg C (SW846 9045C)	5.9		0.1		SU			05/09/23 11.24	1

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Job ID: 320-99906-1

Lab Sample ID: 320-99906-9

Lab Sample ID: 320-99906-10

Matrix: Water

Date Collected: 05/04/23 12:47 Date Received: 05/04/23 19:30

Client Sample ID: MRC-13

Matrix: S	Solid
Percent Solids:	81.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		250	240	ug/Kg	₩	05/09/23 02:00	05/09/23 12:32	10
Method: SW846 6010B - Metal	s (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.4		2.4		mg/Kg	\$	05/08/23 06:30	05/08/23 16:44	1
Barium	90		1.2		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Beryllium	0.55		0.24		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Aluminum	8900	^2	24		mg/Kg	₽	05/08/23 06:30	05/08/23 16:44	1
Chromium	16		0.59		mg/Kg	₽	05/08/23 06:30	05/08/23 16:44	1
Cobalt	6.5		0.59		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Copper	11		1.8		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Lead	18		1.2		mg/Kg	₽	05/08/23 06:30	05/08/23 16:44	1
Molybdenum	ND		2.4		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Nickel	13		1.2		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Selenium	ND		2.4		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Vanadium	30		0.59		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Zinc	41		2.4		mg/Kg	☆	05/08/23 06:30	05/08/23 16:44	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	18.1		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	81.9		0.1		%			05/05/23 14:27	1

General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	6.0		0.1		SU			05/09/23 11:24	1

Client Sample ID: Equipment Blank Date Collected: 05/04/23 12:58 Date Received: 05/04/23 19:30

Method: SW846 7199 - Chromium, Hexavalent (IC) Analyte **Result Qualifier** MDL Unit D RL Prepared Analyzed Dil Fac Chromium, hexavalent ND 0.50 05/05/23 10:53 ug/L 1 Method: SW846 6010B - Metals (ICP) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Aluminum ND 0.20 05/09/23 06:15 05/09/23 15:42 mg/L 1 Arsenic ND 0.020 05/09/23 06:15 05/09/23 15:42 mg/L 1 Barium ND 0.0050 05/09/23 06:15 05/09/23 15:42 mg/L 1 Beryllium ND 0.0020 mg/L 05/09/23 06:15 05/09/23 15:42 1 Cobalt ND 05/09/23 06:15 05/09/23 15:42 0.0050 mg/L 1 Chromium ND 0.0080 mg/L 05/09/23 06:15 05/09/23 15:42 1 Copper ND 0.010 mg/L 05/09/23 06:15 05/09/23 15:42 1 Lead 0.0063 0.0050 mg/L 05/09/23 06:15 05/09/23 15:42 1 Molybdenum ND 0.020 mg/L 05/09/23 06:15 05/09/23 15:42 1 ND Nickel 0.0050 05/09/23 06:15 05/09/23 15:42 mg/L 1 Selenium ND 0.020 mg/L 05/09/23 06:15 05/09/23 15:42 1 Vanadium ND 0.0050 mg/L 05/09/23 06:15 05/09/23 15:42 1 Zinc ND 0.010 mg/L 05/09/23 06:15 05/09/23 15:42 1

Eurofins Sacramento

Page 15 of 38

81.9 4 il Fac 5

6

Job ID: 320-99906-1

Lab Sample ID: 320-99906-11

Client Sample ID: Dup-1 Date Collected: 05/04/23 00:00 Date Received: 05/04/23 19:30

Matrix: Solid Percent Solids: 87.0

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		230	220	ug/Kg	⇒ ¢	05/09/23 02:00	05/09/23 12:44	10
_ Method: SW846 6010B - Metals ((ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	14		2.3		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
Barium	130		1.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
Beryllium	0.69		0.23		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
Aluminum	18000	^2	23		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
Chromium	56		0.57		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
Cobalt	15		0.57		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
Copper	43		1.7		mg/Kg	₽	05/08/23 06:30	05/08/23 16:47	1
Lead	25		1.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
Molybdenum	ND		2.3		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
Nickel	60		1.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
Selenium	ND		2.3		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
Vanadium	64		0.57		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
Zinc	82		2.3		mg/Kg	₽	05/08/23 06:30	05/08/23 16:47	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	13.0		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	87.0		0.1		%			05/05/23 14:27	1
_ General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	6.0		0.1		SU			05/09/23 11:24	1

Date Collected: 05/04/23 13:17 Date Received: 05/04/23 19:30

Method: SW846 7199 - Chromium, Hexavalent (IC) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac ND 230 ÷ Chromium, hexavalent 220 05/09/23 02:00 05/09/23 12:56 ug/Kg 10 Method: SW846 6010B - Metals (ICP) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 2.3 mg/Kg ¢. 05/08/23 06:30 05/08/23 16:50 Arsenic 8.5 1 **Barium** 1.1 mg/Kg 05/08/23 06:30 05/08/23 16:50 86 ¢ 1 **Beryllium** 0.23 mg/Kg 05/08/23 16:50 0.88 Ċf-05/08/23 06:30 1 Aluminum 14000 ^2 23 mg/Kg 05/08/23 06:30 05/08/23 16:50 ₽ 1 0.57 mg/Kg 05/08/23 16:50 Chromium 35 ά 05/08/23 06:30 1 Cobalt 9.9 0.57 mg/Kg ¢ 05/08/23 06:30 05/08/23 16:50 1 Copper 29 1.7 mg/Kg ₽ 05/08/23 06:30 05/08/23 16:50 1 Lead 33 1.1 mg/Kg ₽ 05/08/23 06:30 05/08/23 16:50 1 ND Molybdenum 2.3 mg/Kg ₽ 05/08/23 06:30 05/08/23 16:50 1 32 1.1 05/08/23 06:30 05/08/23 16:50 Nickel mg/Kg Ċ. 1 ND 2.3 Selenium mg/Kg ₽ 05/08/23 06:30 05/08/23 16:50 1 Vanadium 54 0.57 mg/Kg ά 05/08/23 06:30 05/08/23 16:50 1 Zinc 270 2.3 mg/Kg ÷ĊF 05/08/23 06:30 05/08/23 16:50 1

Eurofins Sacramento

Matrix: Solid

Percent Solids: 88.1

Client: TRC Environmental Corporation

Job ID: 320-99906-1

Project/Site: Martinez Refinery									
Client Sample ID: MRC-14		Lab Sample ID: 320-99906-12							
Date Collected: 05/04/23 13:17				Matrix	: Solid				
Date Received: 05/04/23 19:30				Percent Solid	s: 88.1				
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	11.9		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	88.1		0.1		%			05/05/23 14:27	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	5.7		0.1		SU			05/09/23 11:24	1

Job ID: 320-99906-1

Method: 7199 - Chromium, Hexavalent (IC)

Lab Sample ID: MB 570-32	6646/1-A								(Clie	nt Samp	ole ID: Me	ethod	Blank
Matrix: Solid												Prep Ty	pe: Tof	tal/NA
Analysis Batch: 327380												Prep Ba	tch: 3	26646
	r	ИВ МВ												
Analyte	Res	ult Qualifier		RL	Ν	MDL	Unit		D	Pr	epared	Analyz	ed	Dil Fac
Chromium, hexavalent				210		200	ua/Kc	1		05/0	9/23 02:00	05/09/23	05:26	10
							3/2	,						
Lab Sample ID: LCS 570-3	26646/2-A							Cli	ent	Sar	nple ID:	Lab Con	trol Sa	ample
Matrix: Solid												Prep Tv	oe: To	tal/NA
Analysis Batch: 327380												Pren Ba	tch: 3	26646
			Spike		LCS	LCS						%Rec		
Analyte			habhA	R	esult	Qual	lifier	Unit		р	%Rec	Limits		
Chromium hexavalent			19800		9300	quu				-	97	80 120		
			10000		0000			ugnig			01	00-120		
Lab Sample ID: LCSD 570-	-326646/3-A						С	lient S	Sam	ple	ID: Lab		Sampl	e Dup
Matrix: Solid												Pren Tv	ne. To	tal/NA
Analysis Batch: 327380												Pron Ba	tch: 3	26646
Analysis Daten. 027000			Sniko		CSD		п					%Rec		RPD
Analyto					ocult	Oual	lifior	Unit		п	%Pac	limite	PDD	Limit
			10700		8200	Quu				_		80 120		20
			19700	1	0200			uy/Ny			92	00 - 120	0	20
Lab Sample ID: MB 320-67	2410/1-4									Clie	nt Samr		ethod	Blank
Matrix: Water	2410/14									one	in ounip	Pron Tv		tal/NA
Analysis Batch: 672411													JC. 101	
Analysis Datch. 012411														
	,													
Analyta	l Bos	MB MB		ы			Unit		Р	Dr	oparad	Applyz	od	Dil Eac
Analyte	Res	MB MB ult Qualifier		RL	N	NDL			<u>D</u>	Pr	epared	Analyz	ed	Dil Fac
Analyte Chromium, hexavalent	I Res	MB MB ult Qualifier		RL 0.50	N	MDL	Unit ug/L		<u>D</u>	Pr	epared	Analyz 05/05/23	ed 10:26	Dil Fac 1
Analyte Chromium, hexavalent	Γ Res 72410/2-Δ	MB MB ult Qualifier		RL 0.50	N	MDL	Unit ug/L		D	Pr San	repared	Analyz 05/05/23	ed 10:26	Dil Fac 1
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water	Res 72410/2-A	MB MB ult Qualifier		RL	<u> </u>	MDL	Unit ug/L	Cli	D ent	Pr San	repared	Analyz 05/05/23 Lab Con	trol Sa	Dil Fac 1 ample
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411	Res 72410/2-A	MB MB ult Qualifier		RL	N	MDL	Unit ug/L	Cli	D ent	Pr San	repared	Analyz 05/05/23 Lab Con Prep Typ	trol Sa ce: Tot	Dil Fac 1 ample tal/NA
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411	T Res 72410/2-A	MB MB ult Qualifier	 Snika	RL 0.50		MDL	Unit ug/L	Cli	D ent	Pr San	repared	Analyz 05/05/23 Lab Con Prep Typ	ed 10:26 trol Sa be: Tot	Dil Fac 1 ample tal/NA
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411	Tes Res 72410/2-A	MB MB ult Qualifier ND	Spike	RL	LCS		Unit ug/L	Cli	D ent	Pr San	nple ID:	Analyz 05/05/23 Lab Con Prep Tyj %Rec	trol Sa ce: Tot	Dil Fac 1 ample tal/NA
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411 Analyte	T Res 72410/2-A	MB MB ult Qualifier ND	Spike Added	RL	LCS esult	UDL LCS Qual	Unit ug/L	Cli	D ent	Pr San	nple ID:	Analyz 05/05/23 Lab Con Prep Tyr %Rec Limits	atrol Sa De: Tot	Dil Fac 1 ample tal/NA
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent	T Res 72410/2-A	MB MB ult Qualifier ND	Spike Added 2.00	RL 0.50	LCS esult 1.99	UDL LCS Qual	Unit ug/L	Cli Unit ug/L	D ent	Pr San	nple ID: %Rec 100	Analyz 05/05/23 Lab Con Prep Typ %Rec Limits 90 - 110	atrol Sa be: Tot	Dil Fac 1 ample tal/NA
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent	T2410/2-A	MB MB ult Qualifier ND	Spike Added 2.00	RL	LCS esult 1.99	UDL LCS Qual	Unit ug/L	Cli Unit ug/L	D ent	Pr San D	mple ID: %Rec 100	Analyz 05/05/23 Lab Con Prep Tyl %Rec Limits 90 - 110	trol Sa be: Tot	Dil Fac 1 ample tal/NA
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906	T2410/2-A	MB MB ult Qualifier ND	Spike Added 2.00	RL	LCS esult 1.99	UDL LCS Qual	Unit ug/L	Cli Unit ug/L	D ent Clie	Pr San D	nple ID: %Rec 100	Analyz 05/05/23 Lab Con Prep Typ %Rec Limits 90 - 110 D: Equip	itrol Sa pe: Tot	Dil Fac 1 ample tal/NA Blank
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906 Matrix: Water	72410/2-A -10 MS	MB MB ult Qualifier ND	Spike Added 2.00	RL	LCS esult 1.99	UDL LCS Qual	Unit ug/L	Cli Unit ug/L	D ent Clie	Pr San D Int S	mple ID: %Rec 100 Sample I	Analyz 05/05/23 Lab Con Prep Tyj %Rec Limits 90 - 110 D: Equip Prep Tyj	itrol Sa pe: Tot	Dil Fac 1 ample tal/NA Blank tal/NA
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906 Matrix: Water Analysis Batch: 672411	T2410/2-A	MB MB ult Qualifier ND	Spike Added 2.00	RL	LCS esult 1.99	MDL LCS Qual	Unit ug/L	Cli Unit ug/L	D ient Clie	Pr San D ent S	mple ID: MRec 100 Cample I	Analyz 05/05/23 Lab Con Prep Tyl %Rec Limits 90 - 110 D: Equip Prep Tyl	itrol Sa pe: Tol	Dil Fac 1 ample tal/NA Blank tal/NA
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906 Matrix: Water Analysis Batch: 672411	72410/2-A -10 MS	MB MB ult Qualifier ND Sample	Spike Added 2.00 Spike	RL	LCS esult 1.99 MS	MDL LCS Qual	Unit ug/L	Cli Unit ug/L	D ient	Pr San D ent S	mple ID: %Rec 100 Sample I	Analyz 05/05/23 Lab Con Prep Tyl %Rec Limits 90 - 110 D: Equip Prep Tyl %Rec	itrol Sa pe: Tol	Dil Fac 1 ample tal/NA Blank tal/NA
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906 Matrix: Water Analysis Batch: 672411 Analyte	-10 MS	MB MB ult Qualifier ND Sample Qualifier	Spike Added 2.00 Spike Added	RL	LCS esult 1.99 MS esult	MDL LCS Qual	Unit ug/L ifier	Cli Unit ug/L	D ient Clie	Pr San Int S	mple ID: %Rec 100 Sample I %Rec	Analyz 05/05/23 Lab Con Prep Tyl %Rec Limits 90 - 110 D: Equip Prep Tyl %Rec Limits	itrol Sa pe: Tor ment be: Tor	Dil Fac 1 ample tal/NA Blank tal/NA
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent	-10 MS	MB MB ult Qualifier ND	Spike Added 2.00 Spike Added 2.00	RL	LCS esult 1.99 MS esult 1.92	MDL LCS Qual	Unit ug/L lifier	Cli Unit ug/L	D ient Clie	Pr San P ent S	mple ID: %Rec 100 Sample I %Rec 96	Analyz 05/05/23 Lab Con Prep Tyl %Rec Limits 90 - 110 D: Equip Prep Tyl %Rec Limits 80 - 120	itrol Sa pe: Tot	Dil Fac 1 ample tal/NA Blank tal/NA
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent	-10 MS Result -10 MS	MB MB ult Qualifier ND	Spike Added 2.00 Spike Added 2.00	RL	LCS esuit 1.99 MS esuit 1.92	MDL LCS Qual MS Qual	Unit ug/L lifier	Cli Unit ug/L	D ient Clie	Pr San D ent S	mple ID: %Rec 100 Sample I %Rec 96 	Analyz 05/05/23 Lab Con Prep Tyl %Rec Limits 90 - 110 D: Equip Prep Tyl %Rec Limits 80 - 120	red 10:26 htrol Sa pe: Tot ment be: Tot	Dil Fac 1 ample tal/NA Blank tal/NA
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906	-10 MS Result 0 -10 MS	MB MB ult Qualifier ND	Spike Added 2.00 Spike Added 2.00	RL	LCS esult 1.99 MS esult 1.92	MDL LCS Qual MS Qual	Unit ug/L iffier	Cli Unit ug/L	D ient Clie	Pr San D ont S	mple ID: %Rec 100 Sample I %Rec 96 Sample I	Analyz 05/05/23 Lab Con Prep Tyl %Rec Limits 90 - 110 D: Equip Prep Tyl %Rec Limits 80 - 120 D: Equip Prep Tyl	itrol Sa pe: Tot ment ce: Tot	Dil Fac 1 ample tal/NA Blank tal/NA
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906 Matrix: Water	-10 MS Sample 3 Result 0 ND -10 MSD	MB MB ult Qualifier ND	Spike Added 2.00 Spike Added 2.00	RL	LCS esult 1.99 MS esult 1.92	MDL LCS Qual MS Qual	Unit ug/L iffier	Cli ug/L Unit ug/L	D ient Clie Clie	Pr San Int S	mple ID: %Rec 100 Sample I %Rec 96 Sample I	Analyz 05/05/23 Lab Con Prep Tyl %Rec Limits 90 - 110 D: Equip Prep Tyl %Rec Limits 80 - 120 D: Equip Prep Tyl	itrol Sape: Tot	Dil Fac 1 ample tal/NA Blank tal/NA
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906 Matrix: Water Analysis Batch: 672411	-10 MS -10 MS -10 MS -10 MS -10 MSD	MB MB ult Qualifier ND	Spike Added 2.00 Spike Added 2.00	RL	LCS esult 1.99 MS esult 1.92	MDL LCS Qual MS Qual	Unit ug/L ifier	Cli Unit ug/L	D ient Clie Clie	Pr San ent S	mple ID: %Rec 100 Sample I %Rec 96 Sample I Sample I	Analyz 05/05/23 Lab Con Prep Tyl %Rec Limits 90 - 110 D: Equip Prep Tyl %Rec Limits 80 - 120 D: Equip Prep Tyl %Rec	itrol Sa pe: Tot ment be: Tot ment be: Tot	Dil Fac 1 ample tal/NA Blank tal/NA Blank tal/NA
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906 Matrix: Water Analysis Batch: 672411	-10 MS -10 MS -10 MS -10 MS -10 MSD -10 MSD	MB MB ult Qualifier ND Sample Qualifier	Spike Added 2.00 Spike Added 2.00	RL	LCS esult 1.99 MS esult 1.92	MDL LCS Qual MS Qual	Unit ug/L ifier	Cli Unit ug/L	D ient Clie Clie	Pr San P ent \$ P ent \$	repared nple ID: %Rec 100 Sample I %Rec 96 Sample I Sample I	Analyz 05/05/23 Lab Con Prep Tyl %Rec Limits 90 - 110 D: Equip Prep Tyl %Rec Limits 80 - 120 D: Equip Prep Tyl %Rec	itrol Sa pe: Tot ment biment biment be: Tot	Dil Fac 1 ample tal/NA Blank tal/NA Blank tal/NA RPD
Analyte Chromium, hexavalent Lab Sample ID: LCS 320-6 Matrix: Water Analysis Batch: 672411 Analyte Chromium, hexavalent Lab Sample ID: 320-99906 Matrix: Water Analysis Batch: 672411 Lab Sample ID: 320-99906 Matrix: Water Analysis Batch: 672411 Analysis Batch: 672411	-10 MS -10 MS -10 MS Sample 3 Result 0 -10 MSD Sample 3 -10 MSD	MB MB ult Qualifier ND	Spike Added 2.00 Spike Added Spike	RL	LCS esuit 1.99 MSD esuit	MDL LCS Qual MS Qual	Unit ug/L ifier	Cli Unit ug/L Unit ug/L	D ient Clie Clie	Pr San D ent \$ D ent \$	<pre>mple ID: %Rec 100 Sample I Sample I Sample I %Rec 96</pre>	Analyz 05/05/23 Lab Con Prep Tyl %Rec Limits 90 - 110 D: Equip Prep Tyl %Rec Limits 80 - 120 D: Equip Prep Tyl %Rec Limits	itrol Sa pe: Tot ment biment be: Tot	Dil Fac 1 ample tal/NA Blank tal/NA Blank tal/NA RPD Limit

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 320-672930/1-A Matrix: Solid Analysis Batch: 673254

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		2.0		mg/Kg		05/08/23 06:30	05/08/23 15:51	1
Aluminum	ND		20		mg/Kg		05/08/23 06:30	05/08/23 15:51	1
Barium	ND		1.0		mg/Kg		05/08/23 06:30	05/08/23 15:51	1
Beryllium	ND		0.20		mg/Kg		05/08/23 06:30	05/08/23 15:51	1
Cobalt	ND		0.50		mg/Kg		05/08/23 06:30	05/08/23 15:51	1
Chromium	ND		0.50		mg/Kg		05/08/23 06:30	05/08/23 15:51	1
Copper	ND		1.5		mg/Kg		05/08/23 06:30	05/08/23 15:51	1
Lead	ND		1.0		mg/Kg		05/08/23 06:30	05/08/23 15:51	1
Molybdenum	ND		2.0		mg/Kg		05/08/23 06:30	05/08/23 15:51	1
Nickel	ND		1.0		mg/Kg		05/08/23 06:30	05/08/23 15:51	1
Selenium	ND		2.0		mg/Kg		05/08/23 06:30	05/08/23 15:51	1
Vanadium	ND		0.50		mg/Kg		05/08/23 06:30	05/08/23 15:51	1
Zinc	ND		2.0		mg/Kg		05/08/23 06:30	05/08/23 15:51	1

Lab Sample ID: LCS 320-672930/2-A Matrix: Solid Analysis Batch: 673254

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	50.0	44.8		mg/Kg		90	80 - 120	
Aluminum	500	433		mg/Kg		87	80 - 120	
Barium	50.0	43.0		mg/Kg		86	80 - 120	
Beryllium	25.0	22.7		mg/Kg		91	80 - 120	
Cobalt	25.0	22.8		mg/Kg		91	80 - 120	
Chromium	25.0	22.8		mg/Kg		91	80 - 120	
Copper	25.0	21.7		mg/Kg		87	80 - 120	
Lead	25.0	23.5		mg/Kg		94	80 - 120	
Molybdenum	25.0	23.2		mg/Kg		93	80 - 120	
Nickel	25.0	23.1		mg/Kg		92	80 - 120	
Selenium	50.0	44.3		mg/Kg		89	80 - 120	
Vanadium	25.0	23.0		mg/Kg		92	80 - 120	
Zinc	50.5	47.9		mg/Kg		95	80 - 120	

Lab Sample ID: 320-99906-1 MS Matrix: Solid Analysis Batch: 673254

-	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	6.1	F1	58.4	50.7	F1	mg/Kg	¢	76	80 - 120
Aluminum	9300		584	14900	4	mg/Kg	¢	960	80 - 120
Barium	100		58.4	160		mg/Kg	¢	98	80 - 120
Beryllium	0.73	F1	29.2	25.1		mg/Kg	☆	83	80 - 120
Cobalt	6.3		29.2	30.0		mg/Kg	¢	81	80 - 120
Chromium	24		29.2	54.7		mg/Kg	¢	105	80 - 120
Copper	14		29.2	37.7		mg/Kg	☆	82	80 - 120
Lead	15		29.2	40.6		mg/Kg	¢	86	80 - 120
Molybdenum	ND	F1	29.2	23.8	F1	mg/Kg	¢	78	80 - 120
Nickel	23		29.2	47.1		mg/Kg	☆	81	80 - 120
Selenium	ND	F1	58.4	46.8		mg/Kg	¢	80	80 - 120

Eurofins Sacramento

5

7

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 672930

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 672930

Client Sample ID: MRC-9 Prep Type: Total/NA Prep Batch: 672930

QC Sample Results

Client Sample ID: MRC-9

Prep Type: Total/NA

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 320-99906-1 MS **Client Sample ID: MRC-9 Matrix: Solid** Prep Type: Total/NA Analysis Batch: 673254 Prep Batch: 672930 Spike MS MS %Rec Sample Sample Analyte **Result Qualifier** Added **Result Qualifier** Unit D %Rec Limits Vanadium 29 29.2 62.6 mg/Kg ☆ 114 80 - 120 Zinc 64 F1 59.0 122 mg/Kg ₽ 98 80 - 120

Lab Sample ID: 320-99906-1 MSD **Matrix: Solid** Analysis Batch: 673254

Analysis Batch: 673254									Prep Ba	atch: 67	72930
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	6.1	F1	59.0	50.8	F1	mg/Kg	¢	76	80 - 120	0	35
Aluminum	9300		590	14000	4	mg/Kg	¢	796	80 - 120	6	35
Barium	100		59.0	152		mg/Kg	¢	83	80 - 120	5	35
Beryllium	0.73	F1	29.5	24.1	F1	mg/Kg	₽	79	80 - 120	4	35
Cobalt	6.3		29.5	30.9		mg/Kg	¢	83	80 - 120	3	35
Chromium	24		29.5	53.7		mg/Kg	¢	100	80 - 120	2	35
Copper	14		29.5	37.5		mg/Kg	¢	81	80 - 120	0	35
Lead	15		29.5	39.5		mg/Kg	¢	82	80 - 120	3	35
Molybdenum	ND	F1	29.5	23.9	F1	mg/Kg	¢	78	80 - 120	0	35
Nickel	23		29.5	48.5		mg/Kg	¢	85	80 - 120	3	35
Selenium	ND	F1	59.0	46.5	F1	mg/Kg	¢	79	80 - 120	1	35
Vanadium	29		29.5	60.1		mg/Kg	¢	104	80 - 120	4	35
Zinc	64	F1	59.5	110	F1	mg/Kg	¢.	77	80 - 120	10	35

Lab Sample ID: MB 320-673248/1-A **Matrix: Water**

Analysis Batch: 673489

	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.020		mg/L		05/09/23 06:15	05/09/23 15:21	1
Aluminum	ND		0.20		mg/L		05/09/23 06:15	05/09/23 15:21	1
Barium	ND		0.0050		mg/L		05/09/23 06:15	05/09/23 15:21	1
Beryllium	ND		0.0020		mg/L		05/09/23 06:15	05/09/23 15:21	1
Cobalt	ND		0.0050		mg/L		05/09/23 06:15	05/09/23 15:21	1
Chromium	ND		0.0080		mg/L		05/09/23 06:15	05/09/23 15:21	1
Copper	ND		0.010		mg/L		05/09/23 06:15	05/09/23 15:21	1
Lead	ND		0.0050		mg/L		05/09/23 06:15	05/09/23 15:21	1
Molybdenum	ND		0.020		mg/L		05/09/23 06:15	05/09/23 15:21	1
Nickel	ND		0.0050		mg/L		05/09/23 06:15	05/09/23 15:21	1
Selenium	ND		0.020		mg/L		05/09/23 06:15	05/09/23 15:21	1
Vanadium	ND		0.0050		mg/L		05/09/23 06:15	05/09/23 15:21	1
Zinc	ND		0.010		mg/L		05/09/23 06:15	05/09/23 15:21	1

Lab Sample ID: LCS 320-673248/2-A **Matrix: Water** Analysis Batch: 673489

Analysis Batch: 673489							Prep Batch: 6	673248
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.500	0.487		mg/L		97	80 - 120	
Aluminum	5.00	4.81		mg/L		96	80 - 120	
Barium	0.500	0.474		mg/L		95	80 - 120	

Eurofins Sacramento

Prep Type: Total/NA

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 673248

Client Sample ID: Lab Control Sample

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 320-673248/2-A				Clie	nt Sai	mple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 6/3489	• "						Prep Batch: 6/3248
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Beryllium	0.250	0.249		mg/L		99	80 - 120
Cobalt	0.250	0.242		mg/L		97	80 - 120
Chromium	0.250	0.252		mg/L		101	80 - 120
Copper	0.250	0.235		mg/L		94	80 - 120
Lead	0.250	0.256		mg/L		103	80 - 120
Molybdenum	0.250	0.249		mg/L		99	80 - 120
Nickel	0.250	0.244		mg/L		98	80 - 120
Selenium	0.500	0.486		mg/L		97	80 - 120
Vanadium	0.250	0.247		mg/L		99	80 - 120
Zinc	0.505	0.499		mg/L		99	80 - 120
Mathad: 9045C pH							

Method: 9045C - pH

Lab Sample ID: LCS 320-67 Matrix: Solid	72979/2					Clie	nt Sai	mple ID	: Lab Con Prep Tyj	trol Sa pe: Tot	ample tal/NA
Analysis Batch: 672979											
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
pH adj. to 25 deg C			8.00	8.0		SU		100	98 - 102		
 Lab Sample ID: 320-99906-	1 DU							Clie	ent Sampl	e ID: N	IRC-9
Matrix: Solid									Prep Ty	pe: So	oluble
Analysis Batch: 672979											
-	Sample	Sample		DU	DU						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
pH adj. to 25 deg C	6.5			6.6		SU				1	10

Method: D 2216 - Percent Moisture

Lab Sample ID: 320-9990 Matrix: Solid Analysis Batch: 672513	6-1 DU						Client Sample ID: M Prep Type: Tot	IRC-9 al/NA
-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Moisture	14.3		14.5		%			20
Percent Solids	85.7		85.5		%		0.2	20

Prep Batch: 326646

HPLC/IC

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-99906-1	MRC-9	Total/NA	Solid	3060A	
320-99906-2	MRC-10	Total/NA	Solid	3060A	
320-99906-3	MRC-11	Total/NA	Solid	3060A	
320-99906-4	MRC-12	Total/NA	Solid	3060A	
320-99906-5	MRC-4	Total/NA	Solid	3060A	
320-99906-6	MRC-8	Total/NA	Solid	3060A	
320-99906-7	MRC-3	Total/NA	Solid	3060A	
320-99906-8	MRC-1	Total/NA	Solid	3060A	
320-99906-9	MRC-13	Total/NA	Solid	3060A	
320-99906-11	Dup-1	Total/NA	Solid	3060A	
320-99906-12	MRC-14	Total/NA	Solid	3060A	
MB 570-326646/1-A	Method Blank	Total/NA	Solid	3060A	
LCS 570-326646/2-A	Lab Control Sample	Total/NA	Solid	3060A	
LCSD 570-326646/3-A	Lab Control Sample Dup	Total/NA	Solid	3060A	

Analysis Batch: 327380

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
320-99906-1	MRC-9	Total/NA	Solid	7199	326646
320-99906-2	MRC-10	Total/NA	Solid	7199	326646
320-99906-3	MRC-11	Total/NA	Solid	7199	326646
320-99906-4	MRC-12	Total/NA	Solid	7199	326646
320-99906-5	MRC-4	Total/NA	Solid	7199	326646
320-99906-6	MRC-8	Total/NA	Solid	7199	326646
320-99906-7	MRC-3	Total/NA	Solid	7199	326646
320-99906-8	MRC-1	Total/NA	Solid	7199	326646
320-99906-9	MRC-13	Total/NA	Solid	7199	326646
320-99906-11	Dup-1	Total/NA	Solid	7199	326646
320-99906-12	MRC-14	Total/NA	Solid	7199	326646
MB 570-326646/1-A	Method Blank	Total/NA	Solid	7199	326646
LCS 570-326646/2-A	Lab Control Sample	Total/NA	Solid	7199	326646
LCSD 570-326646/3-A	Lab Control Sample Dup	Total/NA	Solid	7199	326646

Filtration Batch: 672410

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 320-672410/1-A	Method Blank	Total/NA	Water	Filtration	
LCS 320-672410/2-A	Lab Control Sample	Total/NA	Water	Filtration	

Analysis Batch: 672411

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-99906-10	Equipment Blank	Total/NA	Water	7199	
MB 320-672410/1-A	Method Blank	Total/NA	Water	7199	672410
LCS 320-672410/2-A	Lab Control Sample	Total/NA	Water	7199	672410
320-99906-10 MS	Equipment Blank	Total/NA	Water	7199	
320-99906-10 MSD	Equipment Blank	Total/NA	Water	7199	

Metals

Prep Batch: 672930

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-99906-1	MRC-9	Total/NA	Solid	3050B	
320-99906-2	MRC-10	Total/NA	Solid	3050B	

Metals (Continued)

Prep Batch: 672930 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-99906-3	MRC-11	Total/NA	Solid	3050B	
320-99906-4	MRC-12	Total/NA	Solid	3050B	
320-99906-5	MRC-4	Total/NA	Solid	3050B	
320-99906-6	MRC-8	Total/NA	Solid	3050B	
320-99906-7	MRC-3	Total/NA	Solid	3050B	
320-99906-8	MRC-1	Total/NA	Solid	3050B	
320-99906-9	MRC-13	Total/NA	Solid	3050B	
320-99906-11	Dup-1	Total/NA	Solid	3050B	
320-99906-12	MRC-14	Total/NA	Solid	3050B	
MB 320-672930/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 320-672930/2-A	Lab Control Sample	Total/NA	Solid	3050B	
320-99906-1 MS	MRC-9	Total/NA	Solid	3050B	
320-99906-1 MSD	MRC-9	Total/NA	Solid	3050B	
Prep Batch: 673248					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
320-99906-10	Equipment Blank	Total/NA	Water	3010A	
MB 320-673248/1-A	Method Blank	Total/NA	Water	3010A	
LCS 320-673248/2-A	Lab Control Sample	Total/NA	Water	3010A	
Analysis Batch: 673	254				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
320-99906-1	MRC-9	Total/NA	Solid	6010B	672930
320-99906-2	MRC-10	Total/NA	Solid	6010B	672930
320-99906-3	MRC-11	Total/NA	Solid	6010B	672930
320-99906-4	MRC-12	Total/NA	Solid	6010B	672930
320-99906-5	MRC-4	Total/NA	Solid	6010B	672930
320-99906-6	MRC-8	Total/NA	Solid	6010B	672930
320-99906-7	MRC-3	Total/NA	Solid	6010B	672930
320-99906-8	MRC-1	Total/NA	Solid	6010B	672930
320-99906-9	MRC-13	Total/NA	Solid	6010B	672930
320-99906-11	Dup-1	Total/NA	Solid	6010B	672930
320-99906-12	MRC-14	Total/NA	Solid	6010B	672930
MB 320-672930/1-A	Method Blank	Total/NA	Solid	6010B	672930
LCS 320-672930/2-A	Lab Control Sample	Total/NA	Solid	6010B	672930
320-99906-1 MS	MRC-9	Total/NA	Solid	6010B	672930
320-99906-1 MSD	MRC-9	Total/NA	Solid	6010B	672930
Analysis Batch: 673	489				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
320-99906-10	Equipment Blank	Total/NA	Water	6010B	673248
MB 320-673248/1-A	Method Blank	Total/NA	Water	6010B	673248
LCS 320-673248/2-A	Lab Control Sample	Total/NA	Water	6010B	673248

General Chemistry

Analysis Batch: 672513

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-99906-1	MRC-9	Iotal/NA	Solid	D 2216	
320-99906-2	MRC-10	Total/NA	Solid	D 2216	
320-99906-3	MRC-11	Total/NA	Solid	D 2216	

General Chemistry (Continued)

Analysis Batch: 672513 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-99906-4	MRC-12	Total/NA	Solid	D 2216	
320-99906-5	MRC-4	Total/NA	Solid	D 2216	
320-99906-6	MRC-8	Total/NA	Solid	D 2216	
320-99906-7	MRC-3	Total/NA	Solid	D 2216	
320-99906-8	MRC-1	Total/NA	Solid	D 2216	
320-99906-9	MRC-13	Total/NA	Solid	D 2216	
320-99906-11	Dup-1	Total/NA	Solid	D 2216	
320-99906-12	MRC-14	Total/NA	Solid	D 2216	
320-99906-1 DU	MRC-9	Total/NA	Solid	D 2216	

Analysis Batch: 672979

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
320-99906-1	MRC-9	Soluble	Solid	9045C	673034	
320-99906-2	MRC-10	Soluble	Solid	9045C	673034	
320-99906-3	MRC-11	Soluble	Solid	9045C	673034	
320-99906-4	MRC-12	Soluble	Solid	9045C	673034	
320-99906-5	MRC-4	Soluble	Solid	9045C	673034	
320-99906-6	MRC-8	Soluble	Solid	9045C	673034	
320-99906-7	MRC-3	Soluble	Solid	9045C	673034	
320-99906-8	MRC-1	Soluble	Solid	9045C	673034	
320-99906-9	MRC-13	Soluble	Solid	9045C	673034	
320-99906-11	Dup-1	Soluble	Solid	9045C	673034	
320-99906-12	MRC-14	Soluble	Solid	9045C	673034	
LCS 320-672979/2	Lab Control Sample	Total/NA	Solid	9045C		
320-99906-1 DU	MRC-9	Soluble	Solid	9045C	673034	

Leach Batch: 673034

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-99906-1	MRC-9	Soluble	Solid	DI Leach	
320-99906-2	MRC-10	Soluble	Solid	DI Leach	
320-99906-3	MRC-11	Soluble	Solid	DI Leach	
320-99906-4	MRC-12	Soluble	Solid	DI Leach	
320-99906-5	MRC-4	Soluble	Solid	DI Leach	
320-99906-6	MRC-8	Soluble	Solid	DI Leach	
320-99906-7	MRC-3	Soluble	Solid	DI Leach	
320-99906-8	MRC-1	Soluble	Solid	DI Leach	
320-99906-9	MRC-13	Soluble	Solid	DI Leach	
320-99906-11	Dup-1	Soluble	Solid	DI Leach	
320-99906-12	MRC-14	Soluble	Solid	DI Leach	
320-99906-1 DU	MRC-9	Soluble	Solid	DI Leach	

Client Sample ID: MRC-9 Date Collected: 05/04/23 08:10 Date Received: 05/04/23 19:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			19.80 g	20 mL	673034	05/08/23 12:09	H1Z	EET SAC
Soluble	Analysis	9045C		1	20 mL	20 mL	672979	05/09/23 11:24	H1Z	EET SAC
Total/NA	Analysis	D 2216		1			672513	05/05/23 14:27	TCS	EET SAC

Client Sample ID: MRC-9 Date Collected: 05/04/23 08:10 Date Received: 05/04/23 19:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			1.22 g	50 mL	326646	05/09/23 02:00	YO8L	EET CAL 4
Total/NA	Analysis	7199		10	4 mL	4 mL	327380	05/09/23 13:32	YO8L	EET CAL 4
Total/NA	Prep	3050B			0.99 g	100 mL	672930	05/08/23 06:30	NIM	EET SAC
Total/NA	Analysis	6010B		1			673254	05/08/23 15:57	SP	EET SAC

Client Sample ID: MRC-10 Date Collected: 05/04/23 08:48 Date Received: 05/04/23 19:30

[Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			20.40 g	20 mL	673034	05/08/23 12:09	H1Z	EET SAC
Soluble	Analysis	9045C		1	20 mL	20 mL	672979	05/09/23 11:24	H1Z	EET SAC
Total/NA	Analysis	D 2216		1			672513	05/05/23 14:27	TCS	EET SAC

Client Sample ID: MRC-10 Date Collected: 05/04/23 08:48 Date Received: 05/04/23 19:30

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			1.28 g	50 mL	326646	05/09/23 02:00	YO8L	EET CAL 4
Total/NA	Analysis	7199		10	4 mL	4 mL	327380	05/09/23 11:08	YO8L	EET CAL 4
Total/NA	Prep	3050B			1.04 g	100 mL	672930	05/08/23 06:30	NIM	EET SAC
Total/NA	Analysis	6010B		1	-		673254	05/08/23 16:17	SP	EET SAC

Client Sample ID: MRC-11 Date Collected: 05/04/23 09:18 Date Received: 05/04/23 19:30

Lab Sample ID: 320-99906-3 Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			19.12 g	20 mL	673034	05/08/23 12:09	H1Z	EET SAC
Soluble	Analysis	9045C		1	20 mL	20 mL	672979	05/09/23 11:24	H1Z	EET SAC
Total/NA	Analysis	D 2216		1			672513	05/05/23 14:27	TCS	EET SAC

Job ID: 320-99906-1

Lab Sample ID: 320-99906-1 Matrix: Solid

Lab Sample ID: 320-99906-1

watrix: 50110

Matrix: Solid

Percent Solids: 85.7

Lab Sample ID: 320-99906-2

Lab Sample ID: 320-99906-2

Matrix: Solid

Matrix: Solid

Percent Solids: 87.8

Eurofins	Sacramento

Client Sample ID: MRC-11 Date Collected: 05/04/23 09:18 Date Received: 05/04/23 19:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			1.21 g	50 mL	326646	05/09/23 02:00	YO8L	EET CAL 4
Total/NA	Analysis	7199		10	4 mL	4 mL	327380	05/09/23 11:20	YO8L	EET CAL 4
Total/NA	Prep	3050B			0.99 g	100 mL	672930	05/08/23 06:30	NIM	EET SAC
Total/NA	Analysis	6010B		1			673254	05/08/23 16:20	SP	EET SAC

Client Sample ID: MRC-12 Date Collected: 05/04/23 09:57 Date Received: 05/04/23 19:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			19.08 g	20 mL	673034	05/08/23 12:09	H1Z	EET SAC
Soluble	Analysis	9045C		1	20 mL	20 mL	672979	05/09/23 11:24	H1Z	EET SAC
Total/NA	Analysis	D 2216		1			672513	05/05/23 14:27	TCS	EET SAC

Client Sample ID: MRC-12 Date Collected: 05/04/23 09:57 Date Received: 05/04/23 19:30

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 3060A 7199	Run	Dil Factor	Initial Amount 1.23 g 4 ml	Final Amount 50 mL 4 ml	Batch Number 326646 327380	Prepared or Analyzed 05/09/23 02:00 05/09/23 11:32	Analyst YO8L YO8l	Lab EET CAL 4
Total/NA Total/NA	Prep Analysis	3050B 6010B		1	0.99 g	100 mL	672930 673254	05/08/23 06:30 05/08/23 16:23	NIM SP	EET SAC EET SAC

Client Sample ID: MRC-4 Date Collected: 05/04/23 10:59 Date Received: 05/04/23 19:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			19.19 g	20 mL	673034	05/08/23 12:09	H1Z	EET SAC
Soluble	Analysis	9045C		1	20 mL	20 mL	672979	05/09/23 11:24	H1Z	EET SAC
Total/NA	Analysis	D 2216		1			672513	05/05/23 14:27	TCS	EET SAC

Client Sample ID: MRC-4 Date Collected: 05/04/23 10:59 Date Received: 05/04/23 19:30

Lab Sample ID: 320-99906-5

Lab Sample ID: 320-99906-5 Matrix: Solid

Percent Solids: 75.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			1.25 g	50 mL	326646	05/09/23 02:00	YO8L	EET CAL 4
Total/NA	Analysis	7199		10	4 mL	4 mL	327380	05/09/23 11:44	YO8L	EET CAL 4
Total/NA	Prep	3050B			1.00 g	100 mL	672930	05/08/23 06:30	NIM	EET SAC
Total/NA	Analysis	6010B		1			673254	05/08/23 16:26	SP	EET SAC

Eurofins Sacramento

Lab Sample ID: 320-99906-4 Matrix: Solid

Percent Solids: 79.3

Matrix: Solid

Job ID: 320-99906-1

Percent Solids: 81.3

Matrix: Solid

Matrix: Solid

Lab Sample ID: 320-99906-3

Lab Sample ID: 320-99906-4

Client Sample ID: MRC-8 Date Collected: 05/04/23 11:26 Date Received: 05/04/23 19:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			19.67 g	20 mL	673034	05/08/23 12:09	H1Z	EET SAC
Soluble	Analysis	9045C		1	20 mL	20 mL	672979	05/09/23 11:24	H1Z	EET SAC
Total/NA	Analysis	D 2216		1			672513	05/05/23 14:27	TCS	EET SAC

Client Sample ID: MRC-8 Date Collected: 05/04/23 11:26 Date Received: 05/04/23 19:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			1.27 g	50 mL	326646	05/09/23 02:00	YO8L	EET CAL 4
Total/NA	Analysis	7199		10	4 mL	4 mL	327380	05/09/23 11:56	YO8L	EET CAL 4
Total/NA	Prep	3050B			1.02 g	100 mL	672930	05/08/23 06:30	NIM	EET SAC
Total/NA	Analysis	6010B		1			673254	05/08/23 16:29	SP	EET SAC

Client Sample ID: MRC-3 Date Collected: 05/04/23 12:00 Date Received: 05/04/23 19:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			19.42 g	20 mL	673034	05/08/23 12:09	H1Z	EET SAC
Soluble	Analysis	9045C		1	20 mL	20 mL	672979	05/09/23 11:24	H1Z	EET SAC
Total/NA	Analysis	D 2216		1			672513	05/05/23 14:27	TCS	EET SAC

Client Sample ID: MRC-3 Date Collected: 05/04/23 12:00 Date Received: 05/04/23 19:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			1.24 g	50 mL	326646	05/09/23 02:00	YO8L	EET CAL 4
Total/NA	Analysis	7199		10	4 mL	4 mL	327380	05/09/23 12:08	YO8L	EET CAL 4
Total/NA	Prep	3050B			1.04 g	100 mL	672930	05/08/23 06:30	NIM	EET SAC
Total/NA	Analysis	6010B		1			673254	05/08/23 16:32	SP	EET SAC

Client Sample ID: MRC-1 Date Collected: 05/04/23 12:28 Date Received: 05/04/23 19:30

Lab	Sample	ID:	320-99906-8
	-		Matrix: Solid

Lab Sample ID: 320-99906-6

Lab Sample ID: 320-99906-7

Lab Sample ID: 320-99906-7

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			19.09 g	20 mL	673034	05/08/23 12:09	H1Z	EET SAC
Soluble	Analysis	9045C		1	20 mL	20 mL	672979	05/09/23 11:24	H1Z	EET SAC
Total/NA	Analysis	D 2216		1			672513	05/05/23 14:27	TCS	EET SAC

Matrix: Solid

Matrix: Solid

Percent Solids: 89.8

Matrix: Solid

Percent Solids: 84.5

9

Client Sample ID: MRC-1 Date Collected: 05/04/23 12:28 Date Received: 05/04/23 19:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			1.26 g	50 mL	326646	05/09/23 02:00	YO8L	EET CAL 4
Total/NA	Analysis	7199		10	4 mL	4 mL	327380	05/09/23 12:20	YO8L	EET CAL 4
Total/NA	Prep	3050B			1.00 g	100 mL	672930	05/08/23 06:30	NIM	EET SAC
Total/NA	Analysis	6010B		1			673254	05/08/23 16:41	SP	EET SAC

Client Sample ID: MRC-13 Date Collected: 05/04/23 12:47 Date Received: 05/04/23 19:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			19.74 g	20 mL	673034	05/08/23 12:09	H1Z	EET SAC
Soluble	Analysis	9045C		1	20 mL	20 mL	672979	05/09/23 11:24	H1Z	EET SAC
Total/NA	Analysis	D 2216		1			672513	05/05/23 14:27	TCS	EET SAC

Client Sample ID: MRC-13 Date Collected: 05/04/23 12:47 Date Received: 05/04/23 19:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			1.21 g	50 mL	326646	05/09/23 02:00	YO8L	EET CAL 4
Total/NA	Analysis	7199		10	4 mL	4 mL	327380	05/09/23 12:32	YO8L	EET CAL 4
Total/NA	Prep	3050B			1.03 g	100 mL	672930	05/08/23 06:30	NIM	EET SAC
Total/NA	Analysis	6010B		1			673254	05/08/23 16:44	SP	EET SAC

Client Sample ID: Equipment Blank Date Collected: 05/04/23 12:58 Date Received: 05/04/23 19:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7199		1	10 mL	10 mL	672411	05/05/23 10:53	JCB	EET SAC
Total/NA	Prep	3010A			50 mL	50 mL	673248	05/09/23 06:15	NIM	EET SAC
Total/NA	Analysis	6010B		1			673489	05/09/23 15:42	SP	EET SAC

Client Sample ID: Dup-1 Date Collected: 05/04/23 00:00 Date Received: 05/04/23 19:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			19.22 g	20 mL	673034	05/08/23 12:09	H1Z	EET SAC
Soluble	Analysis	9045C		1	20 mL	20 mL	672979	05/09/23 11:24	H1Z	EET SAC
Total/NA	Analysis	D 2216		1			672513	05/05/23 14:27	TCS	EET SAC

Lab Sample ID: 320-99906-8 Matrix: Solid

Percent Solids: 80.9

Matrix: Solid

9

Lab Sample ID: 320-99906-9 Matrix: Solid Percent Solids: 81.9

Lab Sample ID: 320-99906-9

Lab Sample ID: 320-99906-10 Matrix: Water

Lab Sample ID: 320-99906-11

Eurofins Sacramento

Matrix: Solid

Client Sample ID: Dup-1 Date Collected: 05/04/23 00:00 Date Received: 05/04/23 19:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			1.23 g	50 mL	326646	05/09/23 02:00	YO8L	EET CAL 4
Total/NA	Analysis	7199		10	4 mL	4 mL	327380	05/09/23 12:44	YO8L	EET CAL 4
Total/NA	Prep	3050B			1.01 g	100 mL	672930	05/08/23 06:30	NIM	EET SAC
Total/NA	Analysis	6010B		1			673254	05/08/23 16:47	SP	EET SAC

Client Sample ID: MRC-14 Date Collected: 05/04/23 13:17 Date Received: 05/04/23 19:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			20.01 g	20 mL	673034	05/08/23 12:09	H1Z	EET SAC
Soluble	Analysis	9045C		1	20 mL	20 mL	672979	05/09/23 11:24	H1Z	EET SAC
Total/NA	Analysis	D 2216		1			672513	05/05/23 14:27	TCS	EET SAC

Client Sample ID: MRC-14 Date Collected: 05/04/23 13:17 Date Received: 05/04/23 19:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			1.25 g	50 mL	326646	05/09/23 02:00	YO8L	EET CAL 4
Total/NA	Analysis	7199		10	4 mL	4 mL	327380	05/09/23 12:56	YO8L	EET CAL 4
Total/NA	Prep	3050B			1.00 g	100 mL	672930	05/08/23 06:30	NIM	EET SAC
Total/NA	Analysis	6010B		1			673254	05/08/23 16:50	SP	EET SAC

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins Sacramento

Job ID: 320-99906-1

Percent Solids: 87.0

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 88.1

Lab Sample ID: 320-99906-11

Lab Sample ID: 320-99906-12

Lab Sample ID: 320-99906-12

13

Laboratory: Eurofins Sacramento Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Program **Identification Number Expiration Date** California State 2897 01-22-24 5 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Analyte Matrix D 2216 Solid Percent Moisture D 2216 Solid Percent Solids Laboratory: Eurofins Calscience The accreditations/certifications listed below are applicable to this report. Authority Program **Identification Number Expiration Date** California State 3082 07-31-24 10

Method Summary

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Method	Method Description	Protocol	Laboratory
7199	Chromium, Hexavalent (IC)	SW846	EET CAL 4
7199	Chromium, Hexavalent (IC)	SW846	EET SAC
6010B	Metals (ICP)	SW846	EET SAC
9045C	рН	SW846	EET SAC
D 2216	Percent Moisture	ASTM	EET SAC
3010A	Preparation, Total Metals	SW846	EET SAC
3050B	Preparation, Metals	SW846	EET SAC
3060A	Alkaline Digestion (Chromium, Hexavalent)	SW846	EET CAL 4
DI Leach	Deionized Water Leaching Procedure	ASTM	EET SAC

Protocol References:

ASTM = ASTM International

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Collected

Received

05/04/23 08:10 05/04/23 19:30

05/04/23 08:48 05/04/23 19:30

05/04/23 09:18 05/04/23 19:30

05/04/23 09:57 05/04/23 19:30

05/04/23 10:59 05/04/23 19:30

05/04/23 11:26 05/04/23 19:30

05/04/23 12:00 05/04/23 19:30

05/04/23 12:28 05/04/23 19:30

05/04/23 12:47 05/04/23 19:30

05/04/23 12:58 05/04/23 19:30

05/04/23 00:00 05/04/23 19:30

05/04/23 13:17 05/04/23 19:30

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Water

Solid

Solid

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

MRC-9

MRC-10

MRC-11

MRC-12

MRC-4

MRC-8

MRC-3

MRC-1

MRC-13

Dup-1

MRC-14

Equipment Blank

Client Sample ID

Lab Sample ID

320-99906-1

320-99906-2 320-99906-3

320-99906-4 320-99906-5

320-99906-6

320-99906-7

320-99906-8

320-99906-9

320-99906-10

320-99906-11

320-99906-12

Job ID: 320-99906-	Job	ID:	320	-99	90	6-
--------------------	-----	-----	-----	-----	----	----

	5
	8
	9
1	2

_			
		_	
		-	

5/25/2023 (Rev. 1)

	🔆 eurofins Environment Testing	COC No:	Page: 2 . 3		Preservation Codes:	A - HCL M - Hexane B - NaOH N - None	C-Zh Acetate C-Ashauz D-Nitric Acid P-Na204S E-NaHSO4 Q-Na2SO3	F - MeOH R - Na2S203 G - Amchlor S - H2SO4 U Amchlor T - TSP Dodecahvdrate	J - DI Water V - MCAA	K - EDTA W - PH 4-5 L - EDA Y - Trizma Z - other (specify)	Conter:	o redmuki las	P Special Instructions/Note:	2 * N. M. L D L.	Ant when your	(administration	Mercuen	Silver	Thall iver		-	e retained longer than 1 month)	Archive For Months		Company Content	123 / 41-20 COPPUTENC	NC 5-4-73 Company		1 2 3 4 5 6 7
	q	Carner Tracking No(s):	State of Origin:	Analusia December 1			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	:wh	24) <u>+</u>	1 v 2	H g										ole Disposal (A fee may be assessed if samples are	Return To Client Disposal By Lab	Method of Shipment	Contraction of the standard of	Conved by Will Daved in a	sceived by Date/Time:	ooler Temperature(s) °C and Other Remarks:	8 9 10 11 12 13
#20702#	Chain of Custody Record	Sampler L. TS.+ Lab PM	Phone 925-494-4385 EMail + 10	DISMd	Due Date Requested:	TAT Requested (days): 5- day TAT	Compliance Project: Δ Yes Δ No	Post 260244	00# 0 0 1 0	Project * 537 895/01	A Date of the second se	Sample Matrix Sample Matrix Sample Matrix Sample Cecop, owners.	Preservation Code: XX	5/4/23 1317 6 S									Provincenti Addiological Speci	Date: Time:	Satrine Company PC R	5/4/13 19:30 compared Re	Jate/Itme: Company Re	ð	54 5.7 C
Eurofins Sacramento	880 Riverside Parkway West Sacramento, CA 95605 Phone (916) 373-5600	Client Information	client contact to Lave Tait	Company: TRC	Address 1850 Galeuran Blud Swite 1000	city (oncard)	State, Zp CA 14520	Phone:	Littell. Doised Marcol	Martine Martinez Refinery		Samole (dentification		MRC-14								Possible Hazard Identification	Deliverable Requested: I, II, II, IV, Other (specify)	Empty Kit Relinquished by:			Pueterde Craale Jakasti, Dustrati C-1111	dustory seals intract. Custory seal No.: Δ Yes Δ No	

Eurofins Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Phone: 916-373-5600 Fax: 916-372-1059		Chain	of Cus	tody F	leco	orc	1								🔅 eurofins	Environment Testin
Client Information (Sub Contract Lab)	Sampler:			Lab	PM:						Carrier T	racking No(s):		COC No:	
Client Contract:	Phone:			E-Ma	il:						State of	Origin:			Page:	
Shipping/Receiving				Mica	ah.Smit	ith@e	et.euro	finsus.	.com		Califor	nia		_	Page 1 of 2	
Eurofins Environment Testing Southwest,					State	- Ca	alifornia	100 (See 1	e note).						320-99906-1	
Address: 2841 Dow Avenue, Suite 100.	Due Date Reque	ested:							Analys	sis Re	ueste	d			Preservation Cod	les:
City: Tustin	TAT Requested	(days):				Γ	T	T					TT	1	A - HCL B - NaOH C - Zn Acetate	N - None O - AsNaO2
State, Zip:	_					E									D - Nitric Acid	P - Na2O4S Q - Na2SO3
CA, 92780 Phone:	PO #:					omiu								3	F - MeOH	R - Na2S2O3 S - H2SO4
714-895-5494(Tel)					0	t Ch	11		11			11		41	G - Amchlor H - Ascorbic Acid	T - TSP Dodecahydrate
Email:	WO #:				or N	valen									I - Ice J - DI Water	V - MCAA
Project Name:	Project #:		_ **		3	Нехан								inen	K - EDTA L - EDA	Y - Trizma
Martinez Refinery Site:	32022029 SSOW#:				Ses Pe	9								onta	Other:	Z - other (specify)
					Sam	060A								ofc		
Sample Identification - Client ID (Lab ID)	Sample Dat	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water, S=solid, O=waste/oll, BT=Tissue, A=Air)	Field Filtered Perform MS/A	7199_ORGFM/3								Total Number	Special Ir	structions/Note:
	\rightarrow	>	Preserva	tion Code:	XX	1								X		
MRC-9 (320-99906-1)	5/4/23	08:10 Pacific		Solid		×								1		
MRC-10 (320-99906-2)	5/4/23	08:48 Pacific		Solid		×								1		
MRC-11 (320-99906-3)	5/4/23	09:18 Pacific		Solid	\square	×								1		
MRC-12 (320-99906-4)	5/4/23	09:57 Pacific		Solid		X								1		
MRC-4 (320-99906-5)	5/4/23	10:59 Pacific		Solid		X								1		
MRC-8 (320-99906-6)	5/4/23	11:26 Pacific		Solid		×										
MRC-3 (320-99906-7)	5/4/23	12:00 Pacific		Solid		X								1		
MRC-1 (320-99906-8)	5/4/23	12:28 Pacific		Solid		X								1		
MRC-13 (320-99906-9)	5/4/23	12:47 Pacific		Solid		X										
Note: Since laboratory accreditations are subject to change, Eurofins Environi laboratory does not currently maintain accreditation in the State of Origin liste- to accreditation status should be brought to Eurofins Environment Testing No. California, LLC.	nent Testing Northern above for analysis/te thern California, LLC a	California, LLC p ests/matrix being a attention immedia	places the owner analyzed, the sa ately. If all reque	rship of methor imples must be ested accredite	d, analyte shipped tions are	e & ac d back e curre	ccreditati k to the E ent to da	ion comp Eurofins ite, return	pliance up Environm n the sign	on our su ent Testin ed Chain	bcontract I g Northerr of Custody	aboratories. California, attesting to	This samp LLC labora said comp	ple ship itory or o liance t	ment is forwarded un other instructions will o Eurofins Environme	der chain-of-custody. If the be provided. Any changes int Testing Northern
Possible Hazard Identification					Sa	ampl	e Disp	osal (A fee n	nay be a	ssesse	d if samp	les are r	etain	ed longer than 1	month)
Unconfirmed			_			\square_{I}	Return	To Cli	ient		Disposal	By Lab		Arch	nive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliv	erable Rank:	1		Sp	becia	l Instru	uctions/	/QC Re	quireme	nts:					
Empty Kit Relinquished by:		Date:			Time:						Me	thod of Ship	ment:			
Relinquished by:	Date/Time:	-23 1	16:30	EETS	AC	Rec	eived by	y:				Da	te/Time:			Company
Relinquished by: Relinquished by: Custody Seals Intact: <u>A Yes</u> <u>A</u> No			Custody			Rec	ceived by ceived by pler Tem	perature	a(s) °C and	d Other Re	emarks:	Da Da 2-3	te/Time: 5-6-2 te/Time:	-2	10:30 . Scl	Company FC Company

Page 35 of 38

380 Riverside Parkway West Sacramento, CA 95605 Phone: 916-373-5600 Fax: 916-372-1059		Chain	of Custo	dy Re	eco	ord									🔅 eurofins	Environment Test
Client Information (Sub Contract Lab)	Sampler:			Lab PM Smith	4: . Mica	ıh				Ca	arrier Trac	king No	o(s):		COC No: 320-306786.2	
Jient Contact: Shinning/Receiving	Phone:			E-Mail: Micat	Smith	h@et	ourofine			St	ate of Orig	gin:			Page: Page 2 of 2	
Company:				/	Accredit	ations f	Required (See note):		anonia			-	Job #:	
Eurofins Environment Testing Southwest,	Due Date Re	quested.			State -	- Calife	ornia								320-99906-1	
841 Dow Avenue, Suite 100, ,	5/15/2023	400000						Ana	lysis	Requ	ested				A - HCI	M - Hexane
ity: Tustin Tata Zin:	TAT Reques	ted (days):													B - NaOH C - Zn Acetate D - Nitric Acid	N - None O - AsNaO2 P - Na2O4S
A, 92780					1	mium									E - NaHSO4	Q - Na2SO3 R - Na2S2O3
none: 14-895-5494(Tel)	PO #:				-	Chror									G - Amchlor	S - H2SO4 T - TSP Dodecahydra
nail:	WO #:				No)	avalent								2	I - Ice J - DI Water	U - Acetone V - MCAA W - pH 4-5
oject Name: lartinez Refinery	Project #: 32022029			1		Неха								enie	L-EDA	Y - Trizma Z - other (specify)
ite:	SSOW#:					DA_IC								1000	Other:	
Sample Identification - Client ID (Lab ID)	Sample [Sample Date Time	Sample M Type (w (C=comp, 0m G=grab) BT=Tit	atrix =water, =solid, vaste/oil, sue, A=Air)	Field Filtered Sc Perform MS/MS	7199_ORGFM/306								Andrea Minimitary	Special Ins	tructions/Note:
		\leq	Preservation	Code:	¥Χ							-	100			
up-1 (320-99906-11)	5/4/23	Pacific		Solid		X			_			_			1	
RC-14 (320-99906-12)	5/4/23	Pacific	5	Solid	+ -	X	_					_	_		1	
					+-				-		+					
							-						+			
												_			-	
Ie: Since laboratory accreditations are subject to change, Eurofins E oratory does not currently maintain accreditation in the State of Orig accreditation status should be brought to Eurofins Environment Test lifornia LLC	nvironment Testing North in listed above for analysi ling Northern California, Ll	ern California, LLC p s/tests/matrix being a .C attention immedia	laces the ownership analyzed, the sample tely. If all requested	of method, s must be s accreditatio	analyte hipped ons are	& accre back to current	the Eurof to date, re	ompliance ins Enviro aturn the s	e upon o onment T signed C	ur subco resting N hain of C	ntract labo orthern C Sustody at	oratories alifornia testing t	s. This s , LLC lat to said co	ample sh poratory c ompliance	ipment is forwarded und or other instructions will b e to Eurofins Environment	er chain-of-custody. If e provided. Any chang t Testing Northern
ossible Hazard Identification					Sar	mple I	Disposa	l (A fe	e may	be ass	essed i	if sam	ples ai	re retai	ned longer than 1	month)
nconfirmed						Re	turn To	Client		Dis,	posal B	y Lab	1	Arc	chive For	Months
eliverable Requested: I, II, III, IV, Other (specify)	Primary De	eliverable Rank:	1		Spe	ecial Ir	nstructio	ns/QC	Require	ements	:					
npty Kit Relinquished by:		Date:		T	Time:			-			Metho	od of Shi	ipment:			
linquished by:	DaterTime:	23 /16	:30 EE	any TSA	€	Receiv	red by:			_		Di	ate/Time	c		Company
Fed FX	Date/Time:		Comp	any		Receiv	ed by:		2 p	-		D	ate/Time	-23	3 10:30	EC
alinquished by:	Date/Time:		Comp	any		Receiv	ed by:	V				Da	ate/Time	6		Company
Custody Seals Intact: Custody Seal No :					100	Cooler	Temperat	ture(s) °C	and Oth	er Rema	rks.					

Login Sample Receipt Checklist

Client: TRC Environmental Corporation

Login Number: 99906 List Number: 1 Creator: Pratali, Sandra A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins Sacramento

Client: TRC Environmental Corporation

Login Number: 99906 List Number: 2 Creator: Yu, Tiffany

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.2
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 320-99906-1

List Source: Eurofins Calscience

List Creation: 05/06/23 01:45 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Laura Tait TRC Environmental Corporation 1850 Gateway Blvd Suite 1000 Concord, California 94520 Generated 5/25/2023 3:38:57 PM Revision 1

JOB DESCRIPTION

Martinez Refinery

JOB NUMBER

320-99962-1

Eurofins Sacramento 880 Riverside Parkway West Sacramento CA 95605

Eurofins Sacramento

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northern California, LLC Project Manager.

Authorization

Maint R 5 Smit

Generated 5/25/2023 3:38:57 PM Revision 1 1

Authorized for release by Micah Smith, Project Manager II <u>Micah.Smith@et.eurofinsus.com</u> (916)374-4302

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	15
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	22

Definitions/Glossary

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Glossary

Abbreviation

¤ %R

CFL

CFU

CNF

DER

DL

DLC

EDL

LOD

LOQ

MCL MDA

MDC

MDL

MPN

MQL

NC

ND

NEG POS

PQL

PRES

QC

RER

ML

Dil Fac

DL, RA, RE, IN

	3
These commonly used abbreviations may or may not be present in this report.	
Listed under the "D" column to designate that the result is reported on a dry weight basis	
Percent Recovery	
Contains Free Liquid	5
Colony Forming Unit	
Contains No Free Liquid	
Duplicate Error Ratio (normalized absolute difference)	
Dilution Factor	
Detection Limit (DoD/DOE)	
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
Decision Level Concentration (Radiochemistry)	8
Estimated Detection Limit (Dioxin)	
Limit of Detection (DoD/DOE)	9
Limit of Quantitation (DoD/DOE)	
EPA recommended "Maximum Contaminant Level"	
Minimum Detectable Activity (Radiochemistry)	
Minimum Detectable Concentration (Radiochemistry)	
Method Detection Limit	
Minimum Level (Dioxin)	
Most Probable Number	
Method Quantitation Limit	
Not Calculated	
Not Detected at the reporting limit (or MDL or EDL if shown)	
Negative / Absent	
Positive / Present	
Practical Quantitation Limit	
Presumptive	
Quality Control	
Relative Error Ratio (Radiochemistry)	

- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Job ID: 320-99962-1

Laboratory: Eurofins Sacramento

Narrative

Job Narrative 320-99962-1

Comments

No additional comments.

Revision

The report being provided is a revision of the original report sent on 5/15/2023. The report (revision 1) was revised for Method 7199 (soil) to accommodate the client's request for a nominal reporting limit (RL) of 200 ug/kg in lieu of the laboratory's default RL (400 ug/kg).

Receipt

The samples were received on 5/5/2023 6:30 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.3° C.

HPLC/IC

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Method 6010B: The post digestion spike % recovery for Antimony associated with batch 320-673758 was outside of control limits. The associated sample is: (320-99252-B-1-C PDS).

Method 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 320-673459 and analytical batch 320-673758 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 320-99962-1

Client Sample ID: MRC-2

Lab Sample ID: 320-99962-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	28		2.4		mg/Kg	1	₽	6010B	Total/NA
Barium	110		1.2		mg/Kg	1	₽	6010B	Total/NA
Beryllium	0.53		0.24		mg/Kg	1	₽	6010B	Total/NA
Aluminum	19000		24		mg/Kg	1	₽	6010B	Total/NA
Chromium	57		0.59		mg/Kg	1	₽	6010B	Total/NA
Cobalt	19		0.59		mg/Kg	1	₽	6010B	Total/NA
Copper	53		1.8		mg/Kg	1	₽	6010B	Total/NA
Lead	79		1.2		mg/Kg	1	₽	6010B	Total/NA
Nickel	56		1.2		mg/Kg	1	₽	6010B	Total/NA
Vanadium	70		0.59		mg/Kg	1	₽	6010B	Total/NA
Zinc	82		2.4		mg/Kg	1	₽	6010B	Total/NA
pH adj. to 25 deg C	6.1		0.1		SU	1		9045C	Soluble

Client Sample ID: MRC-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	7.5		2.4		mg/Kg	1	₽	6010B	Total/NA
Barium	600		1.2		mg/Kg	1	₽	6010B	Total/NA
Beryllium	0.61		0.24		mg/Kg	1	₽	6010B	Total/NA
Aluminum	23000		24		mg/Kg	1	₽	6010B	Total/NA
Chromium	46		0.61		mg/Kg	1	₽	6010B	Total/NA
Cobalt	15		0.61		mg/Kg	1	₽	6010B	Total/NA
Copper	44		1.8		mg/Kg	1	₽	6010B	Total/NA
Lead	11		1.2		mg/Kg	1	₽	6010B	Total/NA
Nickel	44		1.2		mg/Kg	1	₽	6010B	Total/NA
Vanadium	69		0.61		mg/Kg	1	₽	6010B	Total/NA
Zinc	65		2.4		mg/Kg	1	₽	6010B	Total/NA
pH adj. to 25 deg C	6.8		0.1		SU	1		9045C	Soluble

Client Sample ID: MRC-7

Lab Sample ID: 320-99962-3

Lab Sample ID: 320-99962-4

Lab Sample ID: 320-99962-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	8.8		2.4		mg/Kg	1	₽	6010B	Total/NA
Barium	560		1.2		mg/Kg	1	¢	6010B	Total/NA
Beryllium	0.62		0.24		mg/Kg	1	₽	6010B	Total/NA
Aluminum	21000		24		mg/Kg	1	¢	6010B	Total/NA
Chromium	51		0.61		mg/Kg	1	₽	6010B	Total/NA
Cobalt	18		0.61		mg/Kg	1	¢	6010B	Total/NA
Copper	63		1.8		mg/Kg	1	₽	6010B	Total/NA
Lead	31		1.2		mg/Kg	1	¢	6010B	Total/NA
Nickel	60		1.2		mg/Kg	1	₽	6010B	Total/NA
Vanadium	64		0.61		mg/Kg	1	₽	6010B	Total/NA
Zinc	110		2.4		mg/Kg	1	¢	6010B	Total/NA
pH adj. to 25 deg C	7.2		0.1		SU	1		9045C	Soluble

Client Sample ID: MRC-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	6.8		2.5		mg/Kg	1	¢	6010B	Total/NA
Barium	170		1.2		mg/Kg	1	¢	6010B	Total/NA
Beryllium	0.48		0.25		mg/Kg	1	¢	6010B	Total/NA
Aluminum	17000		25		mg/Kg	1	¢	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: MRC-6 (Continued)

Job ID: 320-99962-1

5

Lab Sample ID: 320-99962-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	43		0.62		mg/Kg	1	☆	6010B	Total/NA
Cobalt	12		0.62		mg/Kg	1	₽	6010B	Total/NA
Copper	28		1.9		mg/Kg	1	₽	6010B	Total/NA
Lead	31		1.2		mg/Kg	1	₽	6010B	Total/NA
Nickel	40		1.2		mg/Kg	1	₽	6010B	Total/NA
Vanadium	59		0.62		mg/Kg	1	₽	6010B	Total/NA
Zinc	66		2.5		mg/Kg	1	₽	6010B	Total/NA
pH adj. to 25 deg C	7.1		0.1		SU	1		9045C	Soluble

This Detection Summary does not include radiochemical test results.

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Job ID: 320-99962-1

Lab Sample ID: 320-99962-1

Date Collected: 05/04/23 14:10 Date Received: 05/05/23 18:30

Client Sample ID: MRC-2

Matrix: Solid
Percent Solids: 81.5

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		250	240	ug/Kg		05/11/23 05:00	05/11/23 14:45	10
Method: SW846 6010B - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	28		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Barium	110		1.2		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Beryllium	0.53		0.24		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Aluminum	19000		24		mg/Kg	₽	05/10/23 06:15	05/10/23 15:06	1
Chromium	57		0.59		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Cobalt	19		0.59		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Copper	53		1.8		mg/Kg	₽	05/10/23 06:15	05/10/23 15:06	1
Lead	79		1.2		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Molybdenum	ND		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Nickel	56		1.2		mg/Kg	₽	05/10/23 06:15	05/10/23 15:06	1
Selenium	ND		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Vanadium	70		0.59		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Zinc	82		2.4		mg/Kg	☆	05/10/23 06:15	05/10/23 15:06	1
_ General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	18.5		0.1		%			05/08/23 20:10	1
Percent Solids (ASTM D 2216)	81.5		0.1		%			05/08/23 20:10	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	6.1		0.1		SU			05/09/23 11:24	1
Client Sample ID: MRC-5						L	ab Sample	e ID: 320-99	962-2
Date Collected: 05/04/23 14:49								Matrix	c: Solid

Date Collected: 05/04/23 14:49 Date Received: 05/05/23 18:30

Method: SW846 7199 - Ch	romium, Hexav	alent (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		240	230	ug/Kg	☆	05/11/23 05:00	05/11/23 14:56	10
	letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	7.5		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1
Barium	600		1.2		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1
Beryllium	0.61		0.24		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1
Aluminum	23000		24		mg/Kg	₽	05/10/23 06:15	05/10/23 15:15	1
Chromium	46		0.61		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1
Cobalt	15		0.61		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1
Copper	44		1.8		mg/Kg	₽	05/10/23 06:15	05/10/23 15:15	1
Lead	11		1.2		mg/Kg	₽	05/10/23 06:15	05/10/23 15:15	1
Molybdenum	ND		2.4		mg/Kg	₽	05/10/23 06:15	05/10/23 15:15	1
Nickel	44		1.2		mg/Kg	₽	05/10/23 06:15	05/10/23 15:15	1
Selenium	ND		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1
Vanadium	69		0.61		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1
Zinc	65		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1

Eurofins Sacramento

Percent Solids: 81.7

Client: TRC Environmental Corporation

Job ID: 320-99962-1

Project/Site: Martinez Refinery									
Client Sample ID: MRC-5						L	ab Sample	D: 320-99	962-2
Date Collected: 05/04/23 14:49								Matrix	: Solid
Date Received: 05/05/23 18:30								Percent Solid	ls: 81.7
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	18.3		0.1		%			05/08/23 20:10	1
Percent Solids (ASTM D 2216)	81.7		0.1		%			05/08/23 20:10	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	6.8		0.1		SU			05/09/23 11:24	1
Client Sample ID: MRC-7						L	ab Sample.	e ID: 320-99	962-3
Date Collected: 05/05/23 09:18								Matrix	: Solid
Date Received: 05/05/23 18:30								Percent Solid	ls: 86.4
Method: SW846 7199 - Chromiu	m, Hexav	alent (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		230	220	ug/Kg	☆	05/15/23 03:00	05/15/23 09:16	10
Method: SW846 6010B - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	8.8		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:18	1
Barium	560		1.2		mg/Kg	☆	05/10/23 06:15	05/10/23 15:18	1
Beryllium	0.62		0.24		mg/Kg	☆	05/10/23 06:15	05/10/23 15:18	1
Aluminum	21000		24		mg/Kg	₽	05/10/23 06:15	05/10/23 15:18	1
Chromium	51		0.61		mg/Kg	¢	05/10/23 06:15	05/10/23 15:18	1
Cobalt	18		0.61		mg/Kg	₽	05/10/23 06:15	05/10/23 15:18	1
Copper	63		1.8		mg/Kg	¢	05/10/23 06:15	05/10/23 15:18	1
Lead	31		1.2		mg/Kg	☆	05/10/23 06:15	05/10/23 15:18	1
Molybdenum	ND		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:18	1
Nickel	60		1.2		mg/Kg	☆	05/10/23 06:15	05/10/23 15:18	1
Selenium	ND		2.4		mg/Kg	☆	05/10/23 06:15	05/10/23 15:18	1
Vanadium	64		0.61		mg/Kg	₽	05/10/23 06:15	05/10/23 15:18	1
Zinc	110		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:18	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	13.6		0.1		%			05/08/23 20:10	1
Percent Solids (ASTM D 2216)	86.4		0.1		%			05/08/23 20:10	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	7.2		0.1		SU			05/09/23 11:24	1
Client Sample ID: MRC-6						L	ab Sample	e ID: 320-99	962-4
Date Collected: 05/05/23 09:43								Matrix	: Solid
Date Received: 05/05/23 18:30								Percent Solid	ls: 84.6
Method: SW846 7199 - Chromiu	m. Hexav	alent (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Chromium, hexavalent	ND		230	220	ug/Kg	<u></u>	05/15/23 03:00	05/15/23 09:28	10
Method: SW846 6010P Metelo									
Analyto	(ICF) Result	Qualifier	ы	МП	Unit	п	Droparad	Analyzod	Dil Eso
	rtesult		<u> </u>	MDL	ma/Ka	<u>–</u> –	05/10/23 06·15	05/10/23 15:21	
Rarium	0.0		2.5		mg/Kg	74 24	05/10/23 06.15	05/10/23 15.21	1
Darium	1/0		1.2		mg/r.g	났	03/10/23 00:15	03/10/23 15:21	I

Eurofins Sacramento

5/25/2023 (Rev. 1)

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Job ID: 320-99962-1

Client Sample ID: MRC-6 Date Collected: 05/05/23 09:43 Date Received: 05/05/23 18:30

Lab Sample ID: 320-99962-4 Matrix: Solid

Percent Solids: 84.6

Method: SW846 6010B - Metals	(ICP) (Co	ntinued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Beryllium	0.48		0.25		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	
Aluminum	17000		25		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	6
Chromium	43		0.62		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	
Cobalt	12		0.62		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	
Copper	28		1.9		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	
Lead	31		1.2		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	8
Molybdenum	ND		2.5		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	
Nickel	40		1.2		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	0
Selenium	ND		2.5		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	3
Vanadium	59		0.62		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	
Zinc	66		2.5		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	
 General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Percent Moisture (ASTM D 2216)	15.4		0.1		%			05/08/23 20:10	1	
Percent Solids (ASTM D 2216)	84.6		0.1		%			05/08/23 20:10	1	_
Conorrol Chomiotry Soluble										13
Analyte	Result	Qualifier	RI	мы	Unit	п	Prenared	Analyzed	Dil Fac	
pH adj. to 25 deg C (SW846 9045C)	7.1		0.1		SU	<u> </u>		05/09/23 11:24	1	

QC Sample Results

Job ID: 320-99962-1

Client Sample ID: Method Blank

Method: 7199 - Chromium, Hexavalent (IC) Lab Sample ID: MB 570-327749/1-A

Matrix: Solid										•	Prep Ty	be: Tot	al/NA
Analysis Batch: 320103	MD	мр									Ргер Ба	ICH: 3	27749
Analyta		ND		ы			Unit	-	, n	roporod	Apolyz	ad	
Chromium hovovolont		Quaimer		200		200		L	<u>-</u>	1/22 05:00	Allalyz	eu	10
	ND			200		200	ug/ng		05/1	1/23 03.00	03/11/23	10.12	10
								Clier	nt Sa	mple ID:	Lab Con	trol Sa	mple
Matrix: Solid											Prep Ty	be: Tot	al/NA
Analysis Batch: 328103											Prep Ba	tch: 32	27749
			Spike		LCS	LCS	;				%Rec		
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits		
Chromium, hexavalent			20300		21200			ug/Kg		104	80 - 120		
Lab Sample ID: LCSD 570-327749/3-A Client Sample ID: Lab Control Sample Dup													
Matrix: Solid											Prep Ty	be: Tot	al/NA
Analysis Batch: 328103											Prep Ba	tch: 32	27749
			Spike		LCSD	LCS	D				%Rec		RPD
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits	RPD	Limit
Chromium, hexavalent			20000		20400			ug/Kg		102	80 - 120	4	20
Lab Sample ID: MB 570-328544/1-A									Clie	ent Samp	ole ID: Me	ethod	Blank
Matrix: Solid											Prep Ty	be: Tot	al/NA
Analysis Batch: 328865											Prep Ba	tch: 32	28544
-	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit	0) Р	repared	Analyz	ed	Dil Fac
Chromium, hexavalent	ND			200		190	ug/Kg		05/1	5/23 03:00	05/15/23	07:28	10
 Lab Sample ID: LCS 570-328544/2-A								Clier	nt Sai	mple ID:	Lab Con	trol Sa	ample
Matrix: Solid											Prep Ty	be: Tot	al/NA
Analysis Batch: 328865											Prep Ba	tch: 32	28544
			Spike		LCS	LCS	;				%Rec		
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits		
Chromium, hexavalent			20300		19700			ug/Kg		97	80 - 120		
Lab Sample ID: LCSD 570-328544/3	A						С	lient Sa	mple	ID: Lab	Control S	Sample	e Dup
Matrix: Solid											Prep Ty	be: Tot	al/NA
Analysis Batch: 328865											Prep Ba	tch: 32	28544
			Spike		LCSD	LCS	D				%Rec		RPD
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits	RPD	Limit
Chromium, hexavalent	_		19700		22000			ug/Kg		112	80 - 120	11	20
Method: 6010B - Metals (ICP)													

Lab Sample ID: MB 320-673459/1-A

Matrix: Solid Analysis Batch: 673758

	MB ME	В						
Analyte Re	sult Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	2.0		mg/Kg		05/10/23 06:15	05/10/23 14:30	1
Barium	ND	1.0		mg/Kg		05/10/23 06:15	05/10/23 14:30	1
Beryllium	ND	0.20		mg/Kg		05/10/23 06:15	05/10/23 14:30	1
Aluminum	ND	20		mg/Kg		05/10/23 06:15	05/10/23 14:30	1
Chromium	ND	0.50		mg/Kg		05/10/23 06:15	05/10/23 14:30	1
Cobalt	ND	0.50		mg/Kg		05/10/23 06:15	05/10/23 14:30	1

Eurofins Sacramento

Prep Type: Total/NA

Prep Batch: 673459

Client Sample ID: Method Blank
RL

1.5

1.0

2.0

1.0

2.0

0.50

2.0

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

Lab Sample ID: MB 320-673459/1-A

Matrix: Solid

Analyte

Copper

Molybdenum

Lead

Nickel

Zinc

Selenium

Vanadium

Analysis Batch: 673758

Method: 6010B - Metals (ICP) (Continued)

MB MB

Qualifier

Result

ND

ND

ND

ND

ND

ND

ND

Analyzed

05/10/23 06:15 05/10/23 14:30

05/10/23 06:15 05/10/23 14:30

05/10/23 06:15 05/10/23 14:30

05/10/23 06:15 05/10/23 14:30

05/10/23 06:15 05/10/23 14:30

05/10/23 06:15 05/10/23 14:30

05/10/23 06:15 05/10/23 14:30

Client Sample ID: Method Blank 1 1

1 1 1 1 1 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA Prep Batch: 673459

Lab Sample ID: LCS 320-673459/2-A Matrix: Solid Analysis Batch: 673758

	Spiko	1.09	1.09				% Poc
Analyta	Spike	Beault	Qualifiar	Unit	_	% Bee	
	Added	Result	Quaimer	Unit		%Rec	
Arsenic	50.0	47.4		mg/Kg		95	80 - 120
Barium	50.0	46.8		mg/Kg		94	80 - 120
Beryllium	25.0	24.2		mg/Kg		97	80 - 120
Aluminum	500	483		mg/Kg		97	80 - 120
Chromium	25.0	24.9		mg/Kg		100	80 - 120
Cobalt	25.0	23.8		mg/Kg		95	80 - 120
Copper	25.0	22.3		mg/Kg		89	80 - 120
Lead	25.0	25.3		mg/Kg		101	80 - 120
Molybdenum	25.0	20.2		mg/Kg		81	80 - 120
Nickel	25.0	23.1		mg/Kg		92	80 - 120
Selenium	50.0	51.3		mg/Kg		103	80 - 120
Vanadium	25.0	24.8		mg/Kg		99	80 - 120
Zinc	50.5	51.1		mg/Kg		101	80 - 120
-							

Method: 9045C - pH

Lab Sample ID: LCS 320-672979/2			Client Sample ID: Lab Control Samp					
Matrix: Solid							Prep Type: Tota	I/NA
Analysis Batch: 672979								
-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
pH adj. to 25 deg C	8.00	8.0		SU		100	98 - 102	

Eurofins Sacramento

Prep Type: Total/NA Prep Batch: 673459 Dil Fac Lab Control Sample

Lab Control Sample Dup

QC Association Summary

Job ID: 320-99962-1

327749

327749

8

Prep Batch: 327749

HPLC/IC

Lab Sample ID 320-99962-1	Client Sample ID MRC-2	Prep Type Total/NA	Matrix Solid	Method 3060A	Prep Batch
320-99962-2	MRC-5	Total/NA	Solid	3060A	
MB 570-327749/1-A	Method Blank	Total/NA	Solid	3060A	
LCS 570-327749/2-A	Lab Control Sample	Total/NA	Solid	3060A	
LCSD 570-327749/3-A	Lab Control Sample Dup	Total/NA	Solid	3060A	
Analysis Batch: 328	103				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-99962-1	MRC-2	Total/NA	Solid	7199	327749
320-99962-2	MRC-5	Total/NA	Solid	7199	327749
MB 570-327749/1-A	Method Blank	Total/NA	Solid	7199	327749

LCSD 570-327749/3-A Prep Batch: 328544

LCS 570-327749/2-A

Lab Sample ID 320-99962-3	Client Sample ID MRC-7	Prep Type Total/NA	Solid	MethodPrep Batch3060A
320-99962-4	MRC-6	Total/NA	Solid	3060A
MB 570-328544/1-A	Method Blank	Total/NA	Solid	3060A
LCS 570-328544/2-A	Lab Control Sample	Total/NA	Solid	3060A
LCSD 570-328544/3-A	Lab Control Sample Dup	Total/NA	Solid	3060A

Total/NA

Total/NA

Solid

Solid

7199

7199

Analysis Batch: 328865

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MRC-7	Total/NA	Solid	7199	328544
MRC-6	Total/NA	Solid	7199	328544
Method Blank	Total/NA	Solid	7199	328544
Lab Control Sample	Total/NA	Solid	7199	328544
Lab Control Sample Dup	Total/NA	Solid	7199	328544
	Client Sample ID MRC-7 MRC-6 Method Blank Lab Control Sample Lab Control Sample Dup	Client Sample IDPrep TypeMRC-7Total/NAMRC-6Total/NAMethod BlankTotal/NALab Control SampleTotal/NALab Control Sample DupTotal/NA	Client Sample IDPrep TypeMatrixMRC-7Total/NASolidMRC-6Total/NASolidMethod BlankTotal/NASolidLab Control SampleTotal/NASolidLab Control Sample DupTotal/NASolid	Client Sample IDPrep TypeMatrixMethodMRC-7Total/NASolid7199MRC-6Total/NASolid7199Method BlankTotal/NASolid7199Lab Control Sample DupTotal/NASolid7199

Metals

Prep Batch: 673459

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-99962-1	MRC-2	Total/NA	Solid	3050B	
320-99962-2	MRC-5	Total/NA	Solid	3050B	
320-99962-3	MRC-7	Total/NA	Solid	3050B	
320-99962-4	MRC-6	Total/NA	Solid	3050B	
MB 320-673459/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 320-673459/2-A	Lab Control Sample	Total/NA	Solid	3050B	

Analysis Batch: 673758

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-99962-1	MRC-2	Total/NA	Solid	6010B	673459
320-99962-2	MRC-5	Total/NA	Solid	6010B	673459
320-99962-3	MRC-7	Total/NA	Solid	6010B	673459
320-99962-4	MRC-6	Total/NA	Solid	6010B	673459
MB 320-673459/1-A	Method Blank	Total/NA	Solid	6010B	673459
LCS 320-673459/2-A	Lab Control Sample	Total/NA	Solid	6010B	673459

QC Association Summary

General Chemistry

Analysis Batch: 672979

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
320-99962-1	MRC-2	Soluble	Solid	9045C	673034
320-99962-2	MRC-5	Soluble	Solid	9045C	673034
320-99962-3	MRC-7	Soluble	Solid	9045C	673034
320-99962-4	MRC-6	Soluble	Solid	9045C	673034
LCS 320-672979/2	Lab Control Sample	Total/NA	Solid	9045C	

Leach Batch: 673034

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep E	Batch
320-99962-1	MRC-2	Soluble	Solid	DI Leach	
320-99962-2	MRC-5	Soluble	Solid	DI Leach	
320-99962-3	MRC-7	Soluble	Solid	DI Leach	
320-99962-4	MRC-6	Soluble	Solid	DI Leach	

Analysis Batch: 673224

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	8
320-99962-1	MRC-2	Soluble	Solid	DI Leach		
320-99962-2	MRC-5	Soluble	Solid	DI Leach		9
320-99962-3	MRC-7	Soluble	Solid	DI Leach		
320-99962-4	MRC-6	Soluble	Solid	DI Leach		
Analysis Batch: 6	73224 Client Sample ID	Pron Type	Matrix	Mothod	Pron Batch	
320-99962-1	MRC-2	Total/NA	Solid			
			00110	D 22 10		
320-99962-2	MRC-5	Total/NA	Solid	D 2216		
320-99962-2 320-99962-3	MRC-5 MRC-7	Total/NA Total/NA	Solid Solid	D 2216 D 2216 D 2216		12
320-99962-2 320-99962-3 320-99962-4	MRC-5 MRC-7 MRC-6	Total/NA Total/NA Total/NA	Solid Solid Solid Solid	D 2216 D 2216 D 2216 D 2216		12 13

Client Sample ID: MRC-2 Date Collected: 05/04/23 14:10 Date Received: 05/05/23 18:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			19.56 g	20 mL	673034	05/08/23 16:03	H1Z	EET SAC
Soluble	Analysis	9045C		1	20 mL	20 mL	672979	05/09/23 11:24	H1Z	EET SAC
Total/NA	Analysis	D 2216		1			673224	05/08/23 20:10	JP	EET SAC

Client Sample ID: MRC-2 Date Collected: 05/04/23 14:10 Date Received: 05/05/23 18:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			1.25 g	50 mL	327749	05/11/23 05:00	YO8L	EET CAL 4
Total/NA	Analysis	7199		10	4 mL	4 mL	328103	05/11/23 14:45	YO8L	EET CAL 4
Total/NA	Prep	3050B			1.04 g	100 mL	673459	05/10/23 06:15	NIM	EET SAC
Total/NA	Analysis	6010B		1			673758	05/10/23 15:06	SP	EET SAC

Client Sample ID: MRC-5 Date Collected: 05/04/23 14:49 Date Received: 05/05/23 18:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			19.52 g	20 mL	673034	05/08/23 16:03	H1Z	EET SAC
Soluble	Analysis	9045C		1	20 mL	20 mL	672979	05/09/23 11:24	H1Z	EET SAC
Total/NA	Analysis	D 2216		1			673224	05/08/23 20:10	JP	EET SAC

Client Sample ID: MRC-5 Date Collected: 05/04/23 14:49 Date Received: 05/05/23 18:30

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			1.27 g	50 mL	327749	05/11/23 05:00	YO8L	EET CAL 4
Total/NA	Analysis	7199		10	4 mL	4 mL	328103	05/11/23 14:56	YO8L	EET CAL 4
Total/NA	Prep	3050B			1.00 g	100 mL	673459	05/10/23 06:15	NIM	EET SAC
Total/NA	Analysis	6010B		1			673758	05/10/23 15:15	SP	EET SAC

Client Sample ID: MRC-7 Date Collected: 05/05/23 09:18 Date Received: 05/05/23 18:30

Lab	Sample	ID:	320-99	962-3
	-		Matrix	: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			20.26 g	20 mL	673034	05/08/23 16:03	H1Z	EET SAC
Soluble	Analysis	9045C		1	20 mL	20 mL	672979	05/09/23 11:24	H1Z	EET SAC
Total/NA	Analysis	D 2216		1			673224	05/08/23 20:10	JP	EET SAC

Eurofins Sacramento

Lab Sample ID: 320-99962-1 Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 81.7

Percent Solids: 81.5

Job ID: 320-99962-1

Lab Sample ID: 320-99962-1

Lab Sample ID: 320-99962-2

Lab Sample ID: 320-99962-2

5/25/2023 (Rev. 1)

Client Sample ID: MRC-7 Date Collected: 05/05/23 09:18 Date Received: 05/05/23 18:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			1.24 g	50 mL	328544	05/15/23 03:00	YO8L	EET CAL 4
Total/NA	Analysis	7199		10	4 mL	4 mL	328865	05/15/23 09:16	YO8L	EET CAL 4
Total/NA	Prep	3050B			0.95 g	100 mL	673459	05/10/23 06:15	NIM	EET SAC
Total/NA	Analysis	6010B		1			673758	05/10/23 15:18	SP	EET SAC

Client Sample ID: MRC-6 Date Collected: 05/05/23 09:43 Date Received: 05/05/23 18:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			19.93 g	20 mL	673034	05/08/23 16:03	H1Z	EET SAC
Soluble	Analysis	9045C		1	20 mL	20 mL	672979	05/09/23 11:24	H1Z	EET SAC
Total/NA	Analysis	D 2216		1			673224	05/08/23 20:10	JP	EET SAC

Client Sample ID: MRC-6 Date Collected: 05/05/23 09:43 Date Received: 05/05/23 18:30

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	- 3060A			1.26 g	50 mL	328544	05/15/23 03:00	YO8L	EET CAL 4
Total/NA	Analysis	7199		10	4 mL	4 mL	328865	05/15/23 09:28	YO8L	EET CAL 4
Total/NA	Prep	3050B			0.95 g	100 mL	673459	05/10/23 06:15	NIM	EET SAC
Total/NA	Analysis	6010B		1			673758	05/10/23 15:21	SP	EET SAC

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 320-99962-1

Percent Solids: 86.4

Matrix: Solid

Matrix: Solid

Lab Sample ID: 320-99962-3

Lab Sample ID: 320-99962-4

2 3 4 5 6 7 8 9 10

Lab Sample ID: 320-99962-4 Matrix: Solid Percent Solids: 84.6

13

Laboratory: Eurofins Sacramento Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Program **Identification Number Expiration Date** California State 2897 01-22-24 5 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Analyte Matrix D 2216 Solid Percent Moisture D 2216 Solid Percent Solids Laboratory: Eurofins Calscience The accreditations/certifications listed below are applicable to this report. Authority Program **Identification Number Expiration Date** California State 3082 07-31-24 10

Method Summary

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Method	Method Description	Protocol	Laboratory
7199	Chromium, Hexavalent (IC)	SW846	EET CAL 4
6010B	Metals (ICP)	SW846	EET SAC
9045C	рН	SW846	EET SAC
D 2216	Percent Moisture	ASTM	EET SAC
3050B	Preparation, Metals	SW846	EET SAC
3060A	Alkaline Digestion (Chromium, Hexavalent)	SW846	EET CAL 4
DI Leach	Deionized Water Leaching Procedure	ASTM	EET SAC

Protocol References:

ASTM = ASTM International

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494 EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-99962-1	MRC-2	Solid	05/04/23 14:10	05/05/23 18:30
320-99962-2	MRC-5	Solid	05/04/23 14:49	05/05/23 18:30
320-99962-3	MRC-7	Solid	05/05/23 09:18	05/05/23 18:30
320-99962-4	MRC-6	Solid	05/05/23 09:43	05/05/23 18:30

Eurogines \$2023 (1881 ?! 1)

Eurofins Sacramento				2	0271100		
880 Riverside Parkway West Sacramento, CA 95605 Phono: 07481973 5600	Chain of C	ustody Re	cord	4	10400 0	Control Contro	
0000-515 (0) 51 - 2-2-000	Sampler: /	Lab PM:			Camer Tracking No(e)	COC No.	
Client Information	L. 73;1				reiner Buillagert Balling		
Client Contact: Larea Ta: +	Phone: 925-794-4385	E Mai	ite hree	the dist can	State of Origin	Page of Page	
Company: TRC	PWSID:			Analvsis Rec	uested	## qop	
Address 1850 Walterian Blud Suite 1000	Due Date Requested:	1				Preservation Codes:	
City Concerd	TAT Requested (days):	ł				A - HCL M - Hexane B - NaOH N - None O - AsNaO2	
State. ZIP. CA 94520	Compliance Project: A Yes A No	E		w		C - Zn Acetate D - Nitric Acid P - Na204S E - NaHSO4 Q - Na2SO3	
Phone.	PO# 206244	(2.1-00	1	F - MeOH R - Na2S203 G - Amchlor S - H2SO4 T - TSP Dodecahvdrate	
Email	# OM	01 10	, राध (०।			H - Ascorbic Acid U - Acetone U - Di Water V - MCAA	
Project Name I mare Linez Refineey	Project #: 537815/01	50 <u>)</u> 0	200	24		K - EDTA W - PH 4-5 L - EDA Y - Trizma Z - other (specify)	
Site:	SSOW#	Idmes	L L A) as			of cont	
	Samr Typ Sample (C=co	ole Matrix d e (wwwater, ittered s=solid, Dewwatekoli, It	W/SW 1100	Hd	A.A.		
Sample Identification	Sample Date Time G=gra	ab) BT-TISSUE, A-AIr) in	/) •d ×			F Special Instructions/Note:	
MR6 - 2	5/4/23 1440 6	S	×	X		2 * D. Alat Ros. ot:	
MRC - S	5/4/23 14:49 6	5	XX	X		2 Antiman	
NR-7	5/5/23 4:18 6	5	×××	××		2 (1/2)	
MRC-6	5/5/23 943 6	S	××	X		2 Nercan	
						Silver	
						wr:11ent	
		320-99962	Chain of Cust	dy			
			Sample Dispo	sal (A fee may be	I I I I I I I I I I I I I I I I I I I	stained longer than 1 month)	
Deliverable Requested: I, II, IV, Other (specify)	on B Unknown Radiolo	gical	Special Instruc	o Client Lions/QC Requireme	Disposal By Lab	Archive For Months	
Empty Kit Relinquished by:	Date:	Ĭ <u>I</u>	ne:		Method of Shipment:		
Relinquished by X	Date/Time	Company	Received by	201	Date/Time	11. C. Company -	
Relippuistedy, K	Date/Time: 18:30	Company				72 122 Coment	
Keihquished by	Date/Time	Сотралу	Received by:		Date/Time:	Company	
Custody Seals Intact: Custody Seal No.:			Cooler Tempe	rature(s) °C and Other R	smarks:		
			1	1 12	3.8.0°	Ver. 01/16/2019	
			3	1			

Eurofins Sacramento

880 Riverside Parkway West Sacramento, CA 95605 Phone: 916-373-5600 Fax: 916-372-1059

Chain of Custody Record

eurofins |

Loc: 320 **99962**

Client Information (Sub Contract Lab)	Sampler:	Sampler: Lab P Smit			ת: ח, Micah					Tracking	No(s):			COC No: 320-306989.1	
Client Contact:	Phone:		E-Mail:		State of Califor					Origin:			Page:		
Shipping/Receiving			Mican.	coreditations Required (See note):					rnia				Page 1 of 1		
Eurofins Environment Testing Southwest,			S	tate - California									320-99962-1	1	
Address:	Due Date Requested:						Analy	cic Po	auest	ad			F	Preservation Cod	320
2841 Dow Avenue, Suite 100, ,	TAT Requested (days)			-		T T	Analy		quest	eu	1 1		10.00	A - HCL	-99
Tustin		•												C - Zn Acetate	962
State, Zip:					ε									D - Nitric Acid F - NaHSO4	C
CA, 92780	PO #				omit									F - MeOH	ain
714-895-5494(Tel)			10	-	chr								173	G - Amonior H - Ascorbic Acid	9.
Ēmail:	WO #:		PL N	0	alent									I - Ice J - DI Water	Cus
Project Name	Proiect #:			N	exav								ners	K - EDTA	tod
Martinez Refinery	32022029		0	88	Ϋ́								ntai	L-EDA	
Site:	SSOW#:		dma		50A								of co	Other:	
				SW	M/30(Der c		-
		Sample		Mu	GFI								m		
	s	ample (C=comp.	S=solid,	lor 1	ō					_			alN		
Sample Identification - Client ID (Lab ID)	Sample Date	Time G=grab) BT=	Tissue, A=Air)	Per	719								Tot	Special Ins	sti
		Preservatio	n Code: 🔰	\square						19	122		X	And the second	
/RC-2 (320-99962-1)	5/4/23	14:10 Pacific	Solid		x								1		
MRC-5 (320-99962-2)	5/4/23	14:49 Pacific	Solid		x								1		
MRC-7 (320-99962-3)	5/5/23	09:18 Pacific	Solid		x								1		
MRC-6 (320-99962-4)	5/5/23	09:43 Pacific	Solid		х								1		
													Sec. 1		
tote: Since laboratory accreditations are subject to change, Eurofins aboratory does not currently maintain accreditation in the State of O o accreditation status should be brought to Eurofins Environment Te zalifornia, LLC.	s Environment Testing Northern Califor rigin listed above for analysis/tests/ma esting Northern California, LLC attentio	nia, LLC places the ownersh trix being analyzed, the sam n immediately. If all request	ip of method, a bles must be sh ed accreditation	nalyte a nipped t ns are o	accredition ack to the current to c	ation com e Eurofins date, retu	npliance u s Environr urn the sig	pon our s nent Test ned Chair	ubcontrac ing Northe n of Custo	t laborato ern Califo dy attesti	ories. This rnia, LLC ng to said	s sampl laborato l complia	le shipn ory or o ance to	nent is forwarded und ther instructions will b Eurofins Environmer	er chain-of-custody. If be provided. Any chan ht Testing Northern
Possible Hazard Identification				San	nple Dis	sposal ((A fee l	may be	assess	ed if s	amples	are re	etaine	d longer than 1	month)
Unconfirmed					Retur	n To Cl	lient		Dispos	al By La	ab		Archi	ive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable	e Rank: 1		Spe	cial Inst	ructions	s/QC Re	equirem	ents:						
Empty Kit Relinquished by:	Da	ate:	Т	"ime:					N	lethod of	f Shipmen	nt:			
Relinguished by:	Date/Time:	3 1625	mpany		Received	by:	1/	/			Date/Tir	1gh	3	0940	Company
Relinquished by:	Date/Time:	Co	mpany		Received	by:	7				Date/Tir	mé:	<u> </u>		Company
					J										
Relinquished by:	Date/Time:	Co	mpany		Received	by:					Date/Tir	me:			Company

Login Sample Receipt Checklist

Client: TRC Environmental Corporation

Login Number: 99962 List Number: 1 Creator: Pratali, Sandra A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins Sacramento

Client: TRC Environmental Corporation

Login Number: 99962 List Number: 2 Creator: Kasianchuk, Ivanna

Job Number:	320-99962-1
-------------	-------------

List Source: Eurofins Calscience

List Creation: 05/09/23 02:43 PM

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	1517464
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.2
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Appendix E. May 2023 Soil Data Validation Report

Data Validation Report

Site:Martinez Refinery CompanyLaboratory:Eurofins-West Sacramento, California (pH and Metals; Hexavalent Chromium
Aqueous) and Eurofins/Calscience-Tustin, California (Hexavalent Chromium Soil)SDG Numbers:320-99906-1 (Revision 1) and 320-99962-1 (Revision 1)
Hexavalent Chromium, Select Metals, pHReviewer:Elizabeth Denly/TRC
Peer Reviewer:Date:May 26, 2023

Samples Reviewed and Evaluation Summary

320-99906-1 (Revision 1)):	
MRC-1	MRC-3	MRC-4
MRC-8	MRC-9	MRC-10
MRC-11	MRC-12	MRC-13
MRC-14	DUP-1 ¹	Equipment Blank
320-99962-1 (Revision 1)):	
MRC-2	MRC-5	MRC-6
MRC-7		

¹Field duplicate of MRC-8

The above-listed soil samples and equipment blank were collected on May 4 and 5, 2023 and were analyzed for the following parameters:

- Hexavalent chromium using SW-846 Method 7199
- Select metals using SW-846 Method 6010B
- pH using SW-846 Method 9045C

Limited data validation was performed in accordance with the following data validation guidelines modified for the SW-846 methodologies utilized.

• USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA-542-R-20-006), November 2020

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
 - Holding Times and Sample Preservation
 - Blanks
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- * Laboratory Control Sample (LCS)/LCS Duplicate (LCSD) Results
- * Laboratory Duplicate Results
- * Field Duplicate Results
 - Percent Solids Results
 - Sample Results and Reported Quantitation Limits (QLs)
- * All criteria were met.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. Qualification of the data due to sampling error was not required. Qualifications applied to the data as a result of analytical error are discussed below.

• The results for pH in all soil samples were qualified as estimated (J) due to a holding time exceedance. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

Data Completeness

The data packages were complete Level II data deliverable packages.

Holding Times and Sample Preservation

Holding time and preservation criteria were met for all hexavalent chromium and metals analyses. All soil samples were analyzed four to five days after collection for pH. The pH results in all soil samples were qualified as estimated (J) due to the holding time exceedance.

<u>Blanks</u>

There were no target compounds detected in the method blanks for all analyses. Lead was detected in the equipment blank associated with all soil samples at a concentration of 0.0063 mg/L. Qualification of the data on this basis was not required since the results for lead in all soil samples were >10x the equipment blank concentration.

It should be noted that the narrative for data package 320-99906-1 discussed the detection of aluminum in the calibration blank at a concentration above one-half the QL. The narrative states that samples were not affected as concentrations of aluminum in the samples were >10x the calibration blank concentration.

MS/MSD Results

The laboratory performed MS/MSD analyses on sample Equipment Blank for hexavalent chromium and sample MRC-9 for metals. All criteria were met in the MS/MSD analyses performed on sample Equipment Blank. The recoveries of aluminum (960%/796%) were outside of the 75-125% acceptance criteria in the MS/MSD analyses performed on sample MRC-9. Since the concentration of aluminum in the unspiked sample was >4x the spike amount, qualification of the data on this basis was not required.

LCS/LCSD Results

All criteria were met.

Laboratory Duplicate Results

Laboratory duplicate analysis was performed on sample MRC-9 for pH; all criteria were met.

Field Duplicate Results

Samples MRC-8 and Dup-1 were submitted as the field duplicate pair with this sample set. The

relative percent difference (RPD) acceptance limit for field duplicates in soils is ≤50%. The RPD is not applicable for comparison of results if either concentration is <5× the QL; instead, comparison is based on the absolute difference (AbsD), which must be <2x the QL for soil samples. The following table summarizes the RPDs and AbsDs, as applicable, for the detected analytes in the field duplicate pair and the resulting validation actions. All criteria were met; therefore, no qualifications were required.

Analyte	QL (mg/kg)	MRC-8 (mg/kg)	Dup-1 (mg/kg)	RPD (%) or AbsD (mg/kg)	Validation Actions
Arsenic	2.3	16	14	RPD = 13.3	
Barium	1.2/1.1	130	130	RPD = 0	
Beryllium	Beryllium 0.23 0.77 Aluminum 23 19,000		0.69	AbsD = 0.08	
Aluminum			18,000	RPD = 5.4	
Chromium	Chromium 0.58/0.57 6	64	56	RPD = 13.3	
Cobalt	0.58/0.57	15	15	RPD = 0	Nono, oritorio mot
Copper	1.7	48	43	RPD = 11.0	None, chiena mei.
Lead	1.2/1.1	32	25	RPD = 24.6	
Nickel	1.2/1.1	65	60	RPD = 8.0	
Vanadium	0.58/0.57	70	64	RPD = 9.0	
Zinc	2.3	88	82	RPD = 7.1	
рН	0.1 SU	7.2 SU	6.0 SU	RPD = 18.2	

Percent Solids Results

All criteria were met.

Sample Results and Reported Quantitation Limits

The hexavalent chromium analyses of all soil samples were performed at a 10-fold dilution. The laboratory stated that the dilutions were required due to the nature of the analysis; QLs in these samples were elevated accordingly.

QUALIFIED FORM 1s

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Client Sample ID: MRC-9 Date Collected: 05/04/23 08:10

Date Received: 05/04/23 19:30

Method: SW846 7199 - Chromit	ım, Hexav	alent (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		240	230	ug/Kg	₩ ₩	05/09/23 02:00	05/09/23 13:32	10
Method: SW846 6010B - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.1	F4	2.4		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Barium	100		1.2		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Beryllium	0.73	E1-	0.24		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Aluminum	9300		24		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Chromium	24		0.59		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Cobalt	6.3		0.59		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Copper	14		1.8		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Lead	15		1.2		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Molybdenum	ND	51	2.4		mg/Kg	₽	05/08/23 06:30	05/08/23 15:57	1
Nickel	23		1.2		mg/Kg	¢	05/08/23 06:30	05/08/23 15:57	1
Selenium	ND	F4	2.4		mg/Kg	₽	05/08/23 06:30	05/08/23 15:57	1
Vanadium	29		0.59		mg/Kg	₽	05/08/23 06:30	05/08/23 15:57	1
Zinc	64	E4	2.4		mg/Kg	₽	05/08/23 06:30	05/08/23 15:57	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	14.3		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	85.7		0.1		%			05/05/23 14:27	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	6.5	J	0.1		SU			05/09/23 11:24	1

Client Sample ID: MRC-10

Date Collected: 05/04/23 08:48 Date Received: 05/04/23 19:30

Method: SW846 7199 - Ch	romium, Hexav	alent (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		220	210	ug/Kg	☆	05/09/23 02:00	05/09/23 11:08	10
	letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.1		2.2		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Barium	130		1.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Beryllium	1.2		0.22		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Aluminum	15000	*2-	22		mg/Kg	₽	05/08/23 06:30	05/08/23 16:17	1
Chromium	27		0.55		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Cobalt	11		0.55		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Copper	30		1.6		mg/Kg	₽	05/08/23 06:30	05/08/23 16:17	1
Lead	10		1.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Molybdenum	ND		2.2		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Nickel	30		1.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Selenium	ND		2.2		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Vanadium	59		0.55		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1
Zinc	79		2.2		mg/Kg	¢	05/08/23 06:30	05/08/23 16:17	1

Eurofins Sacramento

5

6

Lab Sample ID: 320-99906-1 Matrix: Solid

Lab Sample ID: 320-99906-2

Matrix: Solid

Percent Solids: 87.8

Percent Solids: 85.7

Client: TRC Environmental Corporation

Job ID: 320-99906-1

Project/Site: Martinez Refinery									
Client Sample ID: MRC-10						L	ab Sample	D: 320-99	906-2
Date Collected: 05/04/23 08:48								Matrix	: Solid
Date Received: 05/04/23 19:30								Percent Solic	ls: 87.8
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	12.2		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	87.8		0.1		%			05/05/23 14:27	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	6.9	J	0.1		SU			05/09/23 11:24	1
Client Sample ID: MRC-11						L	.ab Sample	e ID: 320-99	906-3
Date Collected: 05/04/23 09:18								Matrix	: Solid
Date Received: 05/04/23 19:30								Percent Solic	ls: 81.3
Method: SW846 7199 - Chromiu	m, Hexav	alent (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		250	240	ug/Kg	₽	05/09/23 02:00	05/09/23 11:20	10
Method: SW846 6010B - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.7		2.5		mg/Kg	¢	05/08/23 06:30	05/08/23 16:20	1
Barium	98		1.2		mg/Kg	¢	05/08/23 06:30	05/08/23 16:20	1
Beryllium	0.64		0.25		mg/Kg	¢	05/08/23 06:30	05/08/23 16:20	1
Aluminum	10000	<u>^</u> 2-	25		mg/Kg	₽	05/08/23 06:30	05/08/23 16:20	1
Chromium	29		0.62		mg/Kg	₽	05/08/23 06:30	05/08/23 16:20	1
Cobalt	7.9		0.62		mg/Kg	☆	05/08/23 06:30	05/08/23 16:20	1
Copper	23		1.9		mg/Kg	¢	05/08/23 06:30	05/08/23 16:20	1
Lead	13		1.2		mg/Kg	₽	05/08/23 06:30	05/08/23 16:20	1
Molybdenum	ND		2.5		mg/Kg	₽	05/08/23 06:30	05/08/23 16:20	1
Nickel	31		1.2		mg/Kg	¢	05/08/23 06:30	05/08/23 16:20	1
Selenium	ND		2.5		mg/Kg	¢	05/08/23 06:30	05/08/23 16:20	1
Vanadium	34		0.62		mg/Kg	☆	05/08/23 06:30	05/08/23 16:20	1
Zinc	59		2.5		mg/Kg	¢	05/08/23 06:30	05/08/23 16:20	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	18.7		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	81.3		0.1		%			05/05/23 14:27	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
_pH adj. to 25 deg C (SW846 9045C)	7.1	J	0.1		SU			05/09/23 11:24	1
Client Sample ID: MRC-12						L	ab Sample	D: 320-99	906-4
Date Collected: 05/04/23 09:57								Matrix	: Solid
Date Received: 05/04/23 19:30								Percent Solic	ls: 79.3
Mathadi SM/846 7400 Chromiu		alant (IC)							
Method: SW846 / 199 - Chromiu	M, Hexav		RI	мы	Unit	п	Prenared	Analyzed	Dil Fac
Chromium, hexavalent	ND	quaimer	260	250	υα/Κα	— <u>–</u>	1100000000000000000000000000000000000	05/09/23 11:32	10
			200	200	-9'''8	~	- 0, 00, L0 0L.00	30,00,20 11.02	10
Method: SW846 6010B - Metals	(ICP)	0			11	-	. .	• • ·	B.: -
Analyte	Result	Qualifier	RL	MDL	Unit	<u> </u>	Prepared	Analyzed	Dil Fac
Arsenic	3.9		2.5		mg/Kg	¢	05/08/23 06:30	05/08/23 16:23	1
Barium	86		1.3		mg/Kg	₽	05/08/23 06:30	05/08/23 16:23	1

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Job ID: 320-99906-1

Percent Solids: 79.3

Matrix: Solid

Lab Sample ID: 320-99906-4

Client Sample ID: MRC-12 Date Collected: 05/04/23 09:57 Date Received: 05/04/23 19:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.65		0.25		mg/Kg	¢	05/08/23 06:30	05/08/23 16:23	1
Aluminum	15000	12-	25		mg/Kg	₽	05/08/23 06:30	05/08/23 16:23	1
Chromium	20		0.64		mg/Kg	₽	05/08/23 06:30	05/08/23 16:23	1
Cobalt	5.1		0.64		mg/Kg	₽	05/08/23 06:30	05/08/23 16:23	1
Copper	7.9		1.9		mg/Kg	¢	05/08/23 06:30	05/08/23 16:23	1
Lead	6.6		1.3		mg/Kg	₽	05/08/23 06:30	05/08/23 16:23	1
Molybdenum	ND		2.5		mg/Kg	₽	05/08/23 06:30	05/08/23 16:23	1
Nickel	14		1.3		mg/Kg	¢	05/08/23 06:30	05/08/23 16:23	1
Selenium	ND		2.5		mg/Kg	₽	05/08/23 06:30	05/08/23 16:23	1
Vanadium	30		0.64		mg/Kg	¢	05/08/23 06:30	05/08/23 16:23	1
Zinc	32		2.5		mg/Kg	₽	05/08/23 06:30	05/08/23 16:23	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	20.7		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	79.3		0.1		%			05/05/23 14:27	1
 General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	7.3	J	0.1		SU			05/09/23 11:24	1
Client Sample ID: MRC-4						L	ab Sample	e ID: 320-99	906-5

Date Collected: 05/04/23 10:59 Date Received: 05/04/23 19:30

e id: 320-99906-5 Matrix: Solid Percent Solids: 75.3

Analyzed

Dil Fac

10

Prepared

Method: SW846 7199 - Chromium, Hexavalent (IC) Analyte Result Qualifier RL MDL Unit D x 05/09/23 02:00 05/09/23 11:44 Chromium, hexavalent ND 270 250 ug/Kg

Method: SW846 6010B - Metals						_			
Analyte	Result	Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	24		2.7		mg/Kg	☆	05/08/23 06:30	05/08/23 16:26	1
Barium	110		1.3		mg/Kg	¢	05/08/23 06:30	05/08/23 16:26	1
Beryllium	0.58		0.27		mg/Kg	₽	05/08/23 06:30	05/08/23 16:26	1
Aluminum	9800	<u>^2</u>	27		mg/Kg	₽	05/08/23 06:30	05/08/23 16:26	1
Chromium	87		0.66		mg/Kg	☆	05/08/23 06:30	05/08/23 16:26	1
Cobalt	16		0.66		mg/Kg	☆	05/08/23 06:30	05/08/23 16:26	1
Copper	36		2.0		mg/Kg	₽	05/08/23 06:30	05/08/23 16:26	1
Lead	23		1.3		mg/Kg	☆	05/08/23 06:30	05/08/23 16:26	1
Molybdenum	ND		2.7		mg/Kg	☆	05/08/23 06:30	05/08/23 16:26	1
Nickel	200		1.3		mg/Kg	¢	05/08/23 06:30	05/08/23 16:26	1
Selenium	ND		2.7		mg/Kg	¢	05/08/23 06:30	05/08/23 16:26	1
Vanadium	30		0.66		mg/Kg	¢	05/08/23 06:30	05/08/23 16:26	1
Zinc	56		2.7		mg/Kg	₽	05/08/23 06:30	05/08/23 16:26	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	24.7		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	75.3		0.1		%			05/05/23 14.27	1

Eurofins Sacramento

5

6

		Client	Sample R	Result	ts					
Client: TRC Environmental Corpor Project/Site: Martinez Refinery	ation							Job ID: 320-9	99906-1	
Client Sample ID: MRC-4 Date Collected: 05/04/23 10:59						L	ab Sample.	E ID: 320-99 Matrix	9906-5 c: Solid	
Date Received: 05/04/23 19:30								Percent Solid	ls: 75.3	
General Chemistry - Soluble Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
pH adj. to 25 deg C (SW846 9045C)	6.9	J	0.1		SU			05/09/23 11:24	1	6
Client Sample ID: MRC-8						L	ab Sample.	e ID: 320-99	906-6	
Date Collected: 05/04/23 11:26 Date Received: 05/04/23 19:30								Matrix Percent Solic	c: Solid ls: 84.5	
Method: SW846 7199 - Chromit	um, Hexav	alent (IC)								8
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chromium, hexavalent	ND		230	220	ug/Kg	¢	05/09/23 02:00	05/09/23 11:56	10	9
Method: SW846 6010B - Metals	(ICP)	Qualifian	DI DI	MDI	11		Duenened	Awahanad		
Analyte	Result	Qualifier	RL	MDL	Unit	<u> </u>	Prepared			
Arsenic	16		2.3		mg/Kg	÷2:	05/08/23 06:30	05/08/23 16:29	1	
Barium	130		1.2		mg/Kg	₽	05/08/23 06:30	05/08/23 16:29	1	
Beryllium	0.77		0.23		mg/Kg		05/08/23 06:30	05/08/23 16:29	1	
Aluminum	19000	<u>^2</u>	23		mg/Kg	¢	05/08/23 06:30	05/08/23 16:29	1	
Chromium	64		0.58		mg/Kg	¢	05/08/23 06:30	05/08/23 16:29	1	12
Cobalt	15		0.58		mg/Kg	₽	05/08/23 06:30	05/08/23 16:29	1	13
Copper	48		1.7		mg/Kg	₽	05/08/23 06:30	05/08/23 16:29	1	
Lead	32		1.2		mg/Kg	¢	05/08/23 06:30	05/08/23 16:29	1	
Molybdenum	ND		2.3		mg/Kg	₽	05/08/23 06:30	05/08/23 16:29	1	
Nickel	65		1.2		ma/Ka		05/08/23 06:30	05/08/23 16:29	1	
Selenium	ND		23		ma/Ka	÷.	05/08/23 06:30	05/08/23 16.29	1	
Vanadium	70		0.58		ma/Ka		05/08/23 06:30	05/08/23 16:29	1	
Zinc	88		2.3		mg/Kg	¢.	05/08/23 06:30	05/08/23 16:29	1	
General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Percent Moisture (ASTM D 2216)	15.5		0.1		%			05/05/23 14:27	1	
Percent Solids (ASTM D 2216)	84.5		0.1		%			05/05/23 14:27	1	
General Chemistry - Soluble										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
pH adj. to 25 deg C (SW846 9045C)	7.2	J	0.1		SU			05/09/23 11:24	1	
Client Sample ID: MRC-3						L	ab Sample.	e ID: 320-99	906-7	
Date Collected: 05/04/23 12:00 Date Received: 05/04/23 19:30								Matrix Percent Solic	c: Solid ls: 89.8	
Method: SW846 7199 - Chromit	um, Hexav	alent (IC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chromium, hexavalent	ND		220	210	ug/Kg	¢	05/09/23 02:00	05/09/23 12:08	10	
Method: SW846 6010B - Metals	(ICP)	Qualifier			11	_	D	A		
Analyte	Result	Qualifier	KL	MDL	Unit	D	Prepared	Analyzed	DIIFac	
Arsenic	11		2.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1	
Barium	150		1.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1	
Beryllium	0.93		0.21		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1	
Aluminum	17000	42	21		mg/Kg	☆	05/08/23 06:30	05/08/23 16:32	1	
Chromium	46		0.54		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1	
Cobalt	17		0.54		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1	

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Client Sample ID: MRC-3 Date Collected: 05/04/23 12:00 Date Received: 05/04/23 19:30

Job	ID:	320-99906-1

Lab Sample ID: 320-99906-7 Matrix: Solid

Percent Solids: 89.8

5

6

Method: SW846 6010B - Metals	(ICP) (Coi	ntinued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	44		1.6		mg/Kg	₽	05/08/23 06:30	05/08/23 16:32	1
Lead	31		1.1		mg/Kg	⇔	05/08/23 06:30	05/08/23 16:32	1
Molybdenum	ND		2.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1
Nickel	50		1.1		mg/Kg	₽	05/08/23 06:30	05/08/23 16:32	1
Selenium	ND		2.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1
Vanadium	60		0.54		mg/Kg	☆	05/08/23 06:30	05/08/23 16:32	1
Zinc	210		2.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:32	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	10.2		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	89.8		0.1		%			05/05/23 14:27	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	6.9	J	0.1		SU			05/09/23 11:24	1
Date Collected: 05/04/23 12:28 Date Received: 05/04/23 19:30								Matrix Percent Solic	c: Solid Is: 80.9
Method: SW846 7199 - Chromiu	m, Hexav	alent (IC)	Ы	МПІ	Unit	Б	Bronarod	Applyzod	Dil Eac
Chromium hoxovolont	ND	Quaimer	250	220		— <u>–</u>		Allalyzeu	
Method: SW846 6010B - Metals Analyte	<mark>(ICP)</mark> Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	7.1		2.5		mg/Kg	<u></u>	05/08/23 06:30	05/08/23 16:41	1
Barium	99		1.2		mg/Kg	☆	05/08/23 06:30	05/08/23 16:41	1
Beryllium	0.57		0.25		mg/Kg	¢	05/08/23 06:30	05/08/23 16:41	1
Aluminum	9200	<u>^2</u>	25		mg/Kg	¢.	05/08/23 06:30	05/08/23 16:41	1
Chromium	22	_	0.62		mg/Kg	¢	05/08/23 06:30	05/08/23 16:41	1
Cobalt	7.1		0.62		ma/Ka	÷.	05/08/23 06:30	05/08/23 16:41	1
Copper	20		1.9		ma/Ka	÷.	05/08/23 06:30	05/08/23 16:41	1
Lead	82		1.2		ma/Ka	÷	05/08/23 06:30	05/08/23 16:41	1
Molybdenum	ND		2.5		ma/Ka	÷.	05/08/23 06:30	05/08/23 16:41	1
Nickel	19		12		ma/Ka		05/08/23 06:30	05/08/23 16:41	· · · · · · · · 1
Selenium	ND		2.5		ma/Ka	÷.	05/08/23 06:30	05/08/23 16:41	1
Vanadium	30		0.62		ma/Ka	-0-	05/08/23 06:30	05/08/23 16:41	1
Zinc	160		2.5		mg/Kg	¢	05/08/23 06:30	05/08/23 16:41	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	19.1		0.1		%		·	05/05/23 14:27	1
Percent Solids (ASTM D 2216)	80.9		0.1		%			05/05/23 14:27	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
							•		

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Job ID: 320-99906-1

Lab Sample ID: 320-99906-9

Lab Sample ID: 320-99906-10

Matrix: Water

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Date Collected: 05/04/23 12:47 Date Received: 05/04/23 19:30

Client Sample ID: MRC-13

Matrix: S	Solid
Percent Solids:	81.9

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		250	240	ug/Kg	₩ ₩	05/09/23 02:00	05/09/23 12:32	10
Method: SW846 6010B - Metal	s (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.4		2.4		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Barium	90		1.2		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Beryllium	0.55		0.24		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Aluminum	8900	42	24		mg/Kg	₽	05/08/23 06:30	05/08/23 16:44	1
Chromium	16		0.59		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Cobalt	6.5		0.59		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Copper	11		1.8		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Lead	18		1.2		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Molybdenum	ND		2.4		mg/Kg	₽	05/08/23 06:30	05/08/23 16:44	1
Nickel	13		1.2		mg/Kg	₽	05/08/23 06:30	05/08/23 16:44	1
Selenium	ND		2.4		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Vanadium	30		0.59		mg/Kg	¢	05/08/23 06:30	05/08/23 16:44	1
Zinc	41		2.4		mg/Kg	☆	05/08/23 06:30	05/08/23 16:44	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	18.1		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	81.9		0.1		%			05/05/23 14:27	1

General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	6.0	J	0.1		SU			05/09/23 11:24	1

Client Sample ID: Equipment Blank Date Collected: 05/04/23 12:58 Date Received: 05/04/23 19:30

Analyte

Analyte

Arsenic

Barium

Cobalt

Copper

Lead

Nickel

Zinc

Selenium

Vanadium

Beryllium

Chromium

Aluminum

Method: SW846 7199 - Chromium, Hexavalent (IC) **Result Qualifier** MDL Unit D RL Prepared Analyzed Dil Fac Chromium, hexavalent ND 0.50 05/05/23 10:53 ug/L Method: SW846 6010B - Metals (ICP) **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac ND 0.20 05/09/23 06:15 05/09/23 15:42 mg/L ND 0.020 05/09/23 06:15 05/09/23 15:42 mg/L ND 0.0050 05/09/23 06:15 05/09/23 15:42 mg/L ND 0.0020 mg/L 05/09/23 06:15 05/09/23 15:42 ND 0.0050 05/09/23 06:15 05/09/23 15:42 mg/L ND 0.0080 mg/L 05/09/23 06:15 05/09/23 15:42 ND 0.010 mg/L 05/09/23 06:15 05/09/23 15:42 0.0063 0.0050 mg/L 05/09/23 06:15 05/09/23 15:42 Molybdenum ND 0.020 mg/L 05/09/23 06:15 05/09/23 15:42 ND 0.0050 05/09/23 06:15 05/09/23 15:42 mg/L ND 0.020 mg/L 05/09/23 06:15 05/09/23 15:42

Eurofins Sacramento

05/09/23 06:15 05/09/23 15:42

05/09/23 06:15 05/09/23 15:42

0.0050

0.010

mg/L

mg/L

ND

ND

Job ID: 320-99906-1

Lab Sample ID: 320-99906-11

Date Collected: 05/04/23 00:00 Date Received: 05/04/23 19:30

Client Sample ID: Dup-1

Matrix: Solid Percent Solids: 87.0

5

6

ND ICP) Result		230	220	ug/Kg	<u></u>	05/00/02 00 00		
ICP) Result						05/09/23 02:00	05/09/23 12:44	10
Result								
	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
14		2.3		mg/Kg	\$	05/08/23 06:30	05/08/23 16:47	1
130		1.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
0.69		0.23		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
18000	<u>^2</u>	23		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
56		0.57		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
15		0.57		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
43		1.7		mg/Kg	₽	05/08/23 06:30	05/08/23 16:47	1
25		1.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
ND		2.3		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
60		1.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
ND		2.3		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
64		0.57		mg/Kg	¢	05/08/23 06:30	05/08/23 16:47	1
82		2.3		mg/Kg	☆	05/08/23 06:30	05/08/23 16:47	1
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
13.0		0.1		%			05/05/23 14:27	1
87.0		0.1		%			05/05/23 14:27	1
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
6.0	J	0.1		SU			05/09/23 11:24	1
-	0.69 18000 56 15 43 25 ND 60 ND 64 82 Result 13.0 87.0 Result 6.0	0.69 18000 -42	0.69 0.23 18000 -42 23 56 0.57 15 0.57 43 1.7 25 1.1 ND 2.3 60 1.1 ND 2.3 64 0.57 82 2.3 Result Qualifier RL 13.0 0.1 0.1 87.0 0.1 0.1	0.69 0.23 18000 $^{4}2_{-}$ 23 56 0.57 15 0.57 43 1.7 25 1.1 ND 2.3 60 1.1 ND 2.3 64 0.57 82 2.3 Result Qualifier RL MDL 13.0 0.1 0.1 87.0 0.1 MDL	0.69 0.23 mg/kg 18000<_42_	0.69 0.23 mg/kg \$\$\$ 18000 -42_ 23 mg/kg \$\$\$ 56 0.57 mg/kg \$\$\$ 15 0.57 mg/kg \$\$\$ 43 1.7 mg/kg \$\$\$ 0.1 mg/kg \$\$\$ \$\$\$ 0 1.1 mg/kg \$\$\$ ND 2.3 mg/kg \$\$\$ 60 1.1 mg/kg \$\$\$ ND 2.3 mg/kg \$\$ 64 0.57 mg/kg \$\$ 82 2.3 mg/kg \$\$ 13.0 0.1 \$\$ \$\$ 87.0 0.1 \$\$ \$\$ 6.0 J 0.1 \$\$ \$\$ 6.0 J 0.1 \$\$ \$\$ 0.1 \$\$ \$\$	0.69 0.23 mg/Kg 05/08/23 06:30 18000 -42 23 mg/Kg 05/08/23 06:30 56 0.57 mg/Kg 05/08/23 06:30 15 0.57 mg/Kg 05/08/23 06:30 43 1.7 mg/Kg 05/08/23 06:30 25 1.1 mg/Kg 05/08/23 06:30 ND 2.3 mg/Kg 05/08/23 06:30 60 1.1 mg/Kg 05/08/23 06:30 ND 2.3 mg/Kg 05/08/23 06:30 60 1.1 mg/Kg 05/08/23 06:30 ND 2.3 mg/Kg 05/08/23 06:30 ND 2.3 mg/Kg 05/08/23 06:30 82 0.1 % 05/08/23 06:30 87.0 0.1 % 05/08/23 06:30 </td <td>0.69 0.23 mg/kg 3 05/08/23 06/30 05/08/23 16/37 18000 42 23 mg/kg 3 05/08/23 06/30 05/08/23 16/37 56 0.57 mg/Kg 3 05/08/23 06/30 05/08/23 16/37 43 1.7 mg/Kg 3 05/08/23 06/30 05/08/23 16/47 43 1.1 mg/Kg 3 05/08/23 06/30 05/08/23 16/47 ND 2.3 mg/Kg 3 05/08/23 06/30 05/08/23 16/47 ND 2.3 mg/Kg 3 05/08/23 06/30 05/08/23 16/47 82 2.3 mg/Kg 3 05/08/23 06/30 05/08/23 16/47 82 2.3 mg/Kg 3 05/08/23 06/30 05/08/23 16/47 82 2.3 mg/Kg 3 05/08/23 06/30 05/08/23 16</td>	0.69 0.23 mg/kg 3 05/08/23 06/30 05/08/23 16/37 18000 42 23 mg/kg 3 05/08/23 06/30 05/08/23 16/37 56 0.57 mg/Kg 3 05/08/23 06/30 05/08/23 16/37 43 1.7 mg/Kg 3 05/08/23 06/30 05/08/23 16/47 43 1.1 mg/Kg 3 05/08/23 06/30 05/08/23 16/47 ND 2.3 mg/Kg 3 05/08/23 06/30 05/08/23 16/47 ND 2.3 mg/Kg 3 05/08/23 06/30 05/08/23 16/47 82 2.3 mg/Kg 3 05/08/23 06/30 05/08/23 16/47 82 2.3 mg/Kg 3 05/08/23 06/30 05/08/23 16/47 82 2.3 mg/Kg 3 05/08/23 06/30 05/08/23 16

Date Collected: 05/04/23 13:17 Date Received: 05/04/23 19:30

Method: SW846 7199 - Ch	romium, Hexav	alent (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		230	220	ug/Kg	☆	05/09/23 02:00	05/09/23 12:56	10
	letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	8.5		2.3		mg/Kg	☆	05/08/23 06:30	05/08/23 16:50	1
Barium	86		1.1		mg/Kg	¢	05/08/23 06:30	05/08/23 16:50	1
Beryllium	0.88		0.23		mg/Kg	¢	05/08/23 06:30	05/08/23 16:50	1
Aluminum	14000	*2	23		mg/Kg	₽	05/08/23 06:30	05/08/23 16:50	1
Chromium	35		0.57		mg/Kg	¢	05/08/23 06:30	05/08/23 16:50	1
Cobalt	9.9		0.57		mg/Kg	¢	05/08/23 06:30	05/08/23 16:50	1
Copper	29		1.7		mg/Kg	₽	05/08/23 06:30	05/08/23 16:50	1
Lead	33		1.1		mg/Kg	₽	05/08/23 06:30	05/08/23 16:50	1
Molybdenum	ND		2.3		mg/Kg	¢	05/08/23 06:30	05/08/23 16:50	1
Nickel	32		1.1		mg/Kg	₽	05/08/23 06:30	05/08/23 16:50	1
Selenium	ND		2.3		mg/Kg	₽	05/08/23 06:30	05/08/23 16:50	1
Vanadium	54		0.57		mg/Kg	¢	05/08/23 06:30	05/08/23 16:50	1
Zinc	270		2.3		mg/Kg		05/08/23 06:30	05/08/23 16:50	1

Eurofins Sacramento

Matrix: Solid

Percent Solids: 88.1

Client: TRC Environmental Corporation

Job ID: 320-99906-1

Project/Site: Martinez Refinery									
Client Sample ID: MRC-14	Client Sample ID: MRC-14								06-12
Date Collected: 05/04/23 13:17								Matrix	: Solid
Date Received: 05/04/23 19:30								Percent Solid	s: 88.1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	11.9		0.1		%			05/05/23 14:27	1
Percent Solids (ASTM D 2216)	88.1		0.1		%			05/05/23 14:27	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	5.7	J	0.1		SU			05/09/23 11:24	1

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Job ID: 320-99962-1

Lab Sample ID: 320-99962-1

Client Sample ID: MRC-2 Date Collected: 05/04/23 14:10 Date Received: 05/05/23 18:30

Matrix: Solid
Percent Solids: 81.5

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		250	240	ug/Kg	₩ ₩	05/11/23 05:00	05/11/23 14:45	10
_ Method: SW846 6010B - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	28		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Barium	110		1.2		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Beryllium	0.53		0.24		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Aluminum	19000		24		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Chromium	57		0.59		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Cobalt	19		0.59		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Copper	53		1.8		mg/Kg	₽	05/10/23 06:15	05/10/23 15:06	1
Lead	79		1.2		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Molybdenum	ND		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Nickel	56		1.2		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Selenium	ND		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Vanadium	70		0.59		mg/Kg	¢	05/10/23 06:15	05/10/23 15:06	1
Zinc	82		2.4		mg/Kg	☆	05/10/23 06:15	05/10/23 15:06	1
– General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	18.5		0.1		%			05/08/23 20:10	1
Percent Solids (ASTM D 2216)	81.5		0.1		%			05/08/23 20:10	1
General Chemistry - Soluble	Popult	Qualifier	DI	МП	Unit	Б	Bronarad	Analyzod	
nll adi ta 25 dag C (SW946 0045C)	Result		KL				Fiehalen	05/00/23 11:24	
_pn auj. to 25 deg C (Swo46 9045C)	0.1	5	0.1		50			05/08/25 11.24	1

Date Collected: 05/04/23 14:49 Date Received: 05/05/23 18:30

Method: SW846 7199 - C	hromium, Hexav	alent (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		240	230	ug/Kg	☆	05/11/23 05:00	05/11/23 14:56	10
	Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	7.5		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1
Barium	600		1.2		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1
Beryllium	0.61		0.24		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1
Aluminum	23000		24		mg/Kg	₽	05/10/23 06:15	05/10/23 15:15	1
Chromium	46		0.61		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1
Cobalt	15		0.61		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1
Copper	44		1.8		mg/Kg	₽	05/10/23 06:15	05/10/23 15:15	1
Lead	11		1.2		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1
Molybdenum	ND		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1
Nickel	44		1.2		mg/Kg	₽	05/10/23 06:15	05/10/23 15:15	1
Selenium	ND		2.4		mg/Kg	₽	05/10/23 06:15	05/10/23 15:15	1
Vanadium	69		0.61		mg/Kg	₽	05/10/23 06:15	05/10/23 15:15	1
Zinc	65		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:15	1

Eurofins Sacramento

Percent Solids: 81.7

Client: TRC Environmental Corporation

Job ID: 320-99962-1

Project/Site: Martinez Refinery									
Client Sample ID: MRC-5						L	ab Sample	e ID: 320-99	962-2
Date Collected: 05/04/23 14:49								Matrix	c: Solid
Date Received: 05/05/23 18:30								Percent Solid	ls: 81.7
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	18.3		0.1		%			05/08/23 20:10	1
Percent Solids (ASTM D 2216)	81.7		0.1		%			05/08/23 20:10	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH adj. to 25 deg C (SW846 9045C)	6.8	J	0.1		SU			05/09/23 11:24	1
Client Sample ID: MRC-7						L	ab Sample.	e ID: 320-99	962-3
Date Collected: 05/05/23 09:18 Date Received: 05/05/23 18:30								Matrix Percent Solic	c: Solid ls: 86.4
Method: SW846 7199 - Chromiu	m, Hexav	alent (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		230	220	ug/Kg	¢	05/15/23 03:00	05/15/23 09:16	10
Method: SW846 6010B - Metals									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	8.8		2.4		ma/Ka	— <u>–</u>	05/10/23 06:15	05/10/23 15:18	1
Barium	560		1.2		ma/Ka	±	05/10/23 06:15	05/10/23 15:18	1
Bervllium	0.62		0.24		mg/Kg	¢	05/10/23 06:15	05/10/23 15:18	1
Aluminum	21000		24		mg/Kg	÷	05/10/23 06:15	05/10/23 15:18	1
Chromium	51		0.61		mg/Kg	¢	05/10/23 06:15	05/10/23 15:18	1
Cobalt	18		0.61		mg/Kg	¢	05/10/23 06:15	05/10/23 15:18	1
Copper	63		1.8		ma/Ka		05/10/23 06:15	05/10/23 15:18	1
Lead	31		1.2		mg/Kg	¢	05/10/23 06:15	05/10/23 15:18	1
Molybdenum	ND		2.4		mg/Kg	₽	05/10/23 06:15	05/10/23 15:18	1
Nickel	60		1.2		mg/Kg		05/10/23 06:15	05/10/23 15:18	1
Selenium	ND		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:18	1
Vanadium	64		0.61		mg/Kg	¢	05/10/23 06:15	05/10/23 15:18	1
Zinc	110		2.4		mg/Kg	¢	05/10/23 06:15	05/10/23 15:18	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	13.6		0.1		%			05/08/23 20:10	1
Percent Solids (ASTM D 2216)	86.4		0.1		%			05/08/23 20:10	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
_pH adj. to 25 deg C (SW846 9045C)	7.2	J	0.1		SU			05/09/23 11:24	1
Client Sample ID: MRC-6						L	ab Sample	e ID: 320-99	962-4
Date Collected: 05/05/23 09:43							-	Matrix	c: Solid
Date Received: 05/05/23 18:30								Percent Solid	ls: 84.6
Method: SW846 7199 - Chromiu	m, Hexav	alent (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		230	220	ug/Kg	¢	05/15/23 03:00	05/15/23 09:28	10
Method: SW846 6010B - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.8		2.5		mg/Kg	¢	05/10/23 06:15	05/10/23 15:21	1
Barium	170		1.2		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1

Eurofins Sacramento

5/25/2023 (Rev. 1)

Client: TRC Environmental Corporation Project/Site: Martinez Refinery

Job ID: 320-99962-1

Client Sample ID: MRC-6 Date Collected: 05/05/23 09:43 Date Received: 05/05/23 18:30

Lab Sample ID: 320-99962-4 Matrix: Solid

Percent Solids: 84.6

Method: SW846 6010B - Metals	(ICP) (Co	ntinued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Beryllium	0.48		0.25		mg/Kg	¢	05/10/23 06:15	05/10/23 15:21	1	
Aluminum	17000		25		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	6
Chromium	43		0.62		mg/Kg	☆	05/10/23 06:15	05/10/23 15:21	1	
Cobalt	12		0.62		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	
Copper	28		1.9		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	
Lead	31		1.2		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	8
Molybdenum	ND		2.5		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	
Nickel	40		1.2		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	0
Selenium	ND		2.5		mg/Kg	¢	05/10/23 06:15	05/10/23 15:21	1	3
Vanadium	59		0.62		mg/Kg	¢	05/10/23 06:15	05/10/23 15:21	1	
Zinc	66		2.5		mg/Kg	₽	05/10/23 06:15	05/10/23 15:21	1	
_ General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Percent Moisture (ASTM D 2216)	15.4		0.1		%			05/08/23 20:10	1	
Percent Solids (ASTM D 2216)	84.6		0.1		%			05/08/23 20:10	1	_
General Chemistry - Soluble										13
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
pH adj. to 25 deg C (SW846 9045C)	7.1	J	0.1		SU			05/09/23 11:24	1	

Appendix F. Compositional Pie Charts for Soil, Bulk, and Dust Data

Appendix G. Human Health Risk Evaluation

Table G-1 Individual Sample Residential Soil Risks from Ingestion, Dermal Contact, and Inhalation of Airborne Soil Particulates Spent Catalyca Release from Martinez Refining Company

		MRC-1			MRC-2	!		MRC-3			MRC-4			MRC-5			MRC-6			MRC-7			MRC-8	:	N	/IRC-8 /	Dup-1		MRC-9			MRC-10			MRC-11			MRC-12			MRC-13			MRC-14		Reside	ntial Soil Health
COPC	Conc (mg/kg)	C Risk	NC HQ	Conc (mg/kg)) C Risł	K NC H	Conc (mg/kg) C Risk	NC HQ	Conc (mg/kg)	C Risk	NC HQ	Conc (mg/kg)	C Risk	NC HQ	Conc (mg/kg)	C Risk	NC HQ	Conc (mg/kg)	C Risk	NC HC	Conc (mg/kg) C Risk	K NC H	Conc (mg/kg)) CR	isk NC HQ	Conc (mg/kg	C Risk	NC HQ	Conc (mg/kg)	C Risk	NC HO	Conc (mg/kg)	C Risk	NC HC	Conc (mg/kg)	C Risk	NC HC	Conc (mg/kg) C Risk	NC HQ	Conc (mg/kg)	C Risk	NC HC	2	Standard (mg/kg)
Aluminum	9,200	-	0.12	19,000) (0.25	17,000) (0.22	9,800	-	0.13	23,000	-	0.30	17,000		0.22	21,000		0.27	19,000) (0.25	18,000	0	0.23	9,300	-	0.12	15,000		0.19	10,000		0.13	15,000		0.19	8,900		0.12	14,000		0.18	77,000	NC
Arsenic	7.1	6.5E-05	17.32	28	2.5E-0	4 68.29	11	1.0E-0	1 26.83	24	2.2E-04	58.54	7.5	6.8E-05	18.29	6.8	6.2E-05	16.59	8.8	8.0E-0	5 21.46	16.0	1.5E-0	4 39.02	2 14.0	1.3E	-04 34.15	6.1	5.5E-05	14.88	5.1	4.6E-05	12.44	5.7	5.2E-05	13.90	3.9	3.5E-0	9.51	5.4	4.9E-05	13.17	8.5	7.7E-05	20.73	0.11	C [NC = 0.41]
Barium	99		0.01	110		0.01	150		0.01	110		0.01	600		0.04	170		0.01	560		0.04	130		0.01	130	-	0.01	100	-	0.01	130		0.01	98		0.01	86		0.01	90		0.01	86		0.01	15,000	/ NC
Beryllium	0.57		0.04	0.53		0.03	0.93		0.06	0.58	-	0.04	0.61		0.04	0.48	-	0.03	0.62		0.04	0.77		0.05	0.69		0.04	0.73		0.05	1.2		0.08	0.64		0.04	0.65		0.04	0.55		0.03	0.88		0.06	16	NC
Chromium, Tota	22		0.0002	57		0.000	5 46	-	0.0004	87		0.0007	46		0.0004	43		0.0004	51		0.0004	64		0.000	5 56		0.00	24	-	0.0002	27		0.0002	29		0.0002	2 20		0.0002	2 16		0.0001	35		0.0003	\$ 120,000	0 NC
Cobalt	7.1		0.31	19		0.83	17	-	0.74	16		0.70	15		0.65	12	-	0.52	18		0.78	15	-	0.65	15	-	0.65	6.3	-	0.27	11		0.48	7.9		0.34	5.1		0.22	6.5		0.28	9.9		0.43	23	NC
Copper	20		0.01	53		0.02	44		0.01	36	-	0.01	44		0.01	28	-	0.01	63		0.02	48		0.02	43		0.01	14	-	0.00	30		0.01	23		0.01	7.9		0.00	11		0.004	29		0.01	3,100	NC
Lead	82		1.03	79		0.99	31		0.39	23		0.29	11		0.14	31		0.39	31		0.39	32		0.40	25	-	0.31	15	-	0.19	10		0.13	13		0.16	6.6		0.08	18		0.23	33		0.41	80	NC
Nickel	19		0.02	56		0.07	50	-	0.06	200		0.24	44		0.05	40	-	0.05	60		0.07	65		0.08	60		0.07	23	-	0.03	30		0.04	31		0.04	14		0.02	13		0.02	32		0.04	820	NC
Vanadium	30		0.08	70		0.18	60		0.15	30	-	0.08	69		0.18	59	-	0.15	64		0.16	70		0.18	64		0.16	29	-	0.07	59		0.15	34		0.09	30		0.08	30		0.08	54		0.14	390	NC
Zinc	160		0.01	82		0.004	210		0.009	56	-	0.002	65		0.003	66		0.003	110		0.005	88		0.004	4 82	-	0.004	64	-	0.003	79		0.003	59		0.003	32		0.001	41		0.002	270		0.012	23,000	NC
Total C Risk	& NC HI	6.E-05	18.9		3.E-04	4 70.7		1.E-04	28.5		2.E-04	60.0		7.E-05	19.7		6.E-05	18.0		8.E-05	5 23.2		1.E-04	4 40.7		1.E-	-04 35.7		6.E-05	15.6		5.E-05	13.5		5.E-05	14.7		4.E-05	10.2		5.E-05	13.9		8.E-05	22.0		

Notes:

all soil concentrations and screening levels in mg/kg Bold indicates detection above laboratory reporting limit.

<= not detected at or above specified laboratory reporting limit C = cancer based on a Target Risk Level = 1:E06 COPC = chemical of potential concern Hi = noncancer Hazard Index = 3HQ HQ = noncancer Hazard Budbent mg/kg = milligrams per kilogram NC = noncancer based on a Target Hazard Quotient = 1.0 ND = not detected in soil BS is Benjonal Creening Level

RSL = Regional Screening Level

Table G-2 Adjusted Soil Concentration (Removal of Background Concentration) Spent Catalyst Release from Martinez Refining Company

															Sample I	D (mg/kg)															Upperbound
Analyte	м	RC-1	MF	RC-2	N	IRC-3	м	RC-4	М	RC-5	M	RC-6	М	RC-7	M	RC-8	MRC-	3 /Dup-1	м	RC-9	MF	RC-10	MR	C-11	MR	C-12	MR	RC-13	MF	₹C-14	Background
	Origina	Adjusted	Original	Adjusted	Origina	Adjusted	Original	Adjusted	Original	Adjusted	Original	Adjusted	Original	Adjusted	Original	Adjusted	Original	Adjusted	Original	Adjusted	Origina	Adjusted	Original	Adjusted	Original	Adjusted	Original	Adjusted	Origina	Adjusted	(mg/kg)
Aluminum	9,200	-61800	19,000	-52000	17,000	-54000.00	9,800	-61200	23,000	-48000.0	17,000	-54000	21,000	-50000	19,000	-52000	18,000	-53000	9,300	-61700.0	15,000	-56000	10,000	-61000	15,000	-56000	8,900	-62100	14,000	-57000.0	71,000
Arsenic	7.1	-23.9	28	-3	11	-20.00	24	-7	7.5	-23.5	6.8	-24.2	8.8	-22.2	16.0	-15	14.0	-17	6.1	-24.9	5.1	-25.9	5.7	-25.3	3.9	-27.1	5.4	-25.6	8.5	-22.5	31
Barium	99	-1401	110	-1390	150	-1350	110	-1390	600	-900	170	-1330	560	-940	130	-1370	130	-1370	100	-1400	130	-1370	98	-1402	86	-1414	90	-1410	86	-1414	1,500
Beryllium	0.57	-2.43	0.53	-2.47	0.93	-2.07	0.58	-2.42	0.61	-2.39	0.48	-2.52	0.62	-2.38	0.77	-2.23	0.69	-2.31	0.73	-2.27	1.2	-1.8	0.64	-2.36	0.65	-2.35	0.55	-2.45	0.88	-2.12	3
Chromium, Tota	22	-1668	57	-1633	46	-1644	87	-1603	46	-1644	43	-1647	51	-1639	64	-1626	56	-1634	24	-1666	27	-1663	29	-1661	20	-1670	16	-1674	35	-1655	1,690
Cobalt	7.1	-128.9	19	-117	17	-119	16	-120	15	-121	12	-124	18	-118	15	-121	15	-121	6.3	-129.7	11	-125	7.9	-128.1	5.1	-130.9	6.5	-129.5	9.9	-126.1	136
Copper	20	-79.7	53	-46.7	44	-55.7	36	-63.7	44	-55.7	28	-71.7	63	-36.7	48	-51.7	43	-56.7	14	-85.7	30	-69.7	23	-76.7	7.9	-91.8	11	-88.7	29	-70.7	99.7
Lead	82	-165	79	-168	31	-216	23	-224	11	-236	31	-216	31	-216	32	-215	25	-222	15	-232	10	-237	13	-234	6.6	-240.4	18	-229	33	-214	247
Molybdenum	<2.5	ND	<2.4	ND	<2.1	ND	<2.7	ND	<2.4	ND	<2.5	ND	<2.4	ND	<2.3	ND	<2.3	ND	<2.4	ND	<2.2	ND	<2.5	ND	<2.5	ND	<2.4	ND	<2.3	ND	3.3
Nickel	19	-2221	56	-2184	50	-2190	200	-2040	44	-2196	40	-2200	60	-2180	65	-2175	60	-2180	23	-2217	30	-2210	31	-2209	14	-2226	13	-2227	32	-2208	2,240
Selenium	<2.5	ND	<2.4	ND	<2.1	ND	<2.7	ND	<2.4	ND	<2.5	ND	<2.4	ND	<2.3	ND	<2.3	ND	<2.4	ND	<2.2	ND	<2.5	ND	<2.5	ND	<2.4	ND	<2.3	ND	7
Vanadium	30	-200	70	-160	60	-170	30	-200	69	-161	59	-171	64	-166	70	-160	64	-166	29	-201	59	-171	34	-196	30	-200	30	-200	54	-176	230
Zinc	160	-314	82	-392	210	-264	56	-418	65	-409	66	-408	110	-364	88	-386	82	-392	64	-410	79	-395	59	-415	32	-442	41	-433	270	-204	474
Chromium VI	< 0.25	ND	<0.25	ND	< 0.22	ND	<0.27	ND	< 0.24	ND	< 0.23	ND	< 0.23	ND	< 0.23	ND	< 0.23	ND	< 0.24	ND	< 0.22	ND	< 0.25	ND	< 0.26	ND	< 0.25	ND	< 0.23	ND	NA

Notes:

Bold indicates detection above laboratory reporting limit.

< = not detected at or above specified laboratory reporting limit

Adjusted soil concentration = measured soil concentration - upperbound expected background range

mg/kg = milligrams per kilogram NA = Not applicable

ND = not detected

Table G-3 Individual Sample Residential Soil Risks from Ingestion, Dermal Contact, and Inhalation of Airborne Soil Particulates (Excluding Background) Spent Catalyst Release from Martinez Refining Company

CORC		MRC-1		1	MRC-2			MRC-3			MRC-4			MRC-5		м	RC-6		MRC	2-7		М	IRC-8		MR	C-8 /Dup	⊢1		MRC-9			MRC-10			MRC-11		,	MRC-12		1	MRC-13		1 1	MRC-14		Resid	dential Soil
COPC	Adj Conc (mg/kg)	C Risk	NC HQ	Adj Conc (mg/kg)	C Risk	NC HQ	Adj Con (mg/kg)	C Risk	NC HQ	Adj Conc (mg/kg)	C Risk	NC HQ	Adj Conc (mg/kg)	C Risk	NC HQ	Adj Conc (mg/kg)	C Risk NC	HQ Adj (m	Conc g/kg) C F	Risk NC	HQ Adj (m	Conc g/kg)	C Risk	NC HQ	Adj Conc (mg/kg)	C Risk	NC HQ	Adj Conc (mg/kg)	C Risk	NC HQ	Adj Conc (mg/kg)	C Risk	NC HQ	Adj Conc (mg/kg)	C Risk	NC HQ	Adj Conc (mg/kg)	C Risk	NC HQ	Adj Conc (mg/kg)	C Risk	NC HQ	Adj Conc (mg/kg)	C Risk	NC HQ	(I	mg/kg)
Aluminum	-61,800	-	0.00	-52,000		0.00	-54,000		0.00	-61,200		0.00	-48,000		0.00	-54,000	0.	00 -50	,000 -	- 0.0	00 -5	2,000		0.00	-53,000		0.00	-61,700		0.00	-56,000	1	0.00	-61,000		0.00	-56,000		0.00	-62,100	- 1	0.00	-57,000		0.00	77,000	NC
Arsenic	-23.9	0.0E+00	0.00	-3	0.0E+00	0.00	-20	0.0E+00	0.00	-7	0.0E+00	0.00	-24	0.0E+00	0.00	-24 0	.0E+00 0	00 ·	-22 0.0E	+00 0.	00	-15 0	0.0E+00	0.00	-17	0.0E+00	0.00	-25	0.0E+00	0.00	-26	0.0E+00	0.00	-25	0.0E+00	0.00	-27	0.0E+00	0.00	-26	0.0E+00	0.00	-23	0.0E+00	0.00	0.11	C [NC = 0.41]
Barium	-1,401		0.00	-1,390		0.00	-1,350		0.00	-1,390		0.00	-900		0.00	-1,330	- 0	- 00	940 -	- 0.	00 -1	,370		0.00	-1,370		0.00	-1,400		0.00	-1,370		0.00	-1,402		0.00	-1,414		0.00	-1,410	- 1	0.00	-1,414		0.00	15,000	NC
Beryllium	-2.43		0.00	-2.47		0.00	-2.07		0.00	-2.42		0.00	-2.39		0.00	-2.52	- 0	00 -2	2.38 -	- 0.0	- 00	2.23		0.00	-2.31		0.00	-2.27		0.00	-1.80		0.00	-2.36		0.00	-2.35		0.00	-2.45	- 1	0.00	-2.12		0.00	16	NC
Chromium, Total	-1,668		0.00	-1,633		0.00	-1,644		0.00	-1,603		0.00	-1,644		0.00	-1,647	- 0	00 -1	,639 -	- 0.	00 -1	,626		0.00	-1,634			-1,666		0.00	-1,663		0.00	-1,661		0.00	-1,670		0.00	-1,674	- 1	0.00	-1,655		0.00	120,000	NC
Cobalt	-128.9		0.00	-117		0.00	-119		0.00	-120		0.00	-121		0.00	-124	- 0	- 00	118 -	- 0.	- 00	121		0.00	-121		0.00	-130		0.00	-125		0.00	-128		0.00	-131		0.00	-130	- 1	0.00	-126		0.00	23	NC
Copper	-79.7		0.00	-47		0.00	-56		0.00	-64		0.00	-56		0.00	-72	- 0	00 .	-37 -	- 0.0	00	-52		0.00	-57		0.00	-86		0.00	-70		0.00	-77		0.00	-92		0.00	-89	- 1	0.00	-71		0.00	3,100	NC
Lead	-165		0.00	-168		0.00	-216	-	0.00	-224		0.00	-236		0.00	-216	- 0.	- 00	216 -	- 0.0	- 00	215		0.00	-222		0.00	-232		0.00	-237		0.00	-234		0.00	-240		0.00	-229	- 1	0.00	-214		0.00	80	NC
Nickel	-2,221		0.00	-2,184		0.00	-2,190		0.00	-2,040		0.00	-2,196		0.00	-2,200	- 0	00 -2	,180 -	- 0.	00 -2	,175		0.00	-2,180		0.00	-2,217		0.00	-2,210		0.00	-2,209		0.00	-2,226		0.00	-2,227	- 1	0.00	-2,208		0.00	820	NC
Vanadium	-200		0.00	-160		0.00	-170		0.00	-200		0.00	-161		0.00	-171	- 0	- 00	166 -	- 0.0	- 00	160		0.00	-166		0.00	-201		0.00	-171		0.00	-196		0.00	-200		0.00	-200	- 1	0.00	-176		0.00	390	NC
Zinc	-314		0.00	-392		0.00	-264		0.00	-418		0.00	-409		0.00	-408	- 0.	- 00	364 -	- 0.0	- 00	386		0.00	-392		0.00	-410		0.00	-395		0.00	-415		0.00	-442		0.00	-433	- 1	0.00	-204		0.00	23,000	NC
Total C Risk	NC HI	0.E+00	0.0		0.E+00	0.0		0.E+00	0.0		0.E+00	0.0		0.E+00	0.0	().E+00 0	.0	0.E	+00 0	.0		0.E+00	0.0		0.E+00	0.0		0.E+00	0.0		0.E+00	0.0		0.E+00	0.0		0.E+00	0.0		0.E+00	0.0		0.E+00	0.0		-

Notes:

all soil concentrations and screening levels in mg/kg Bold indicates detection above laboratory reporting limit.

<= not detected at or above specified laboratory reporting limit C = cancer based on a Target Risk Level = 1E-06 HI = noncancer Hazard Index = 3HQ HQ = noncancer Hazard Quotient

ng = milligrams per kilogram MC = noncancer based on a Target Hazard Quotient = 1.0 ND = not detected in soll RSL = Regional Screening Level

Table G-4 Summary of Residential Soil Risks from Ingestion, Dermal Contact, and Inhalation of Airborne Soil Particulates

Spent Catalyst Release from Martinez Refining Company

Expedure Bethweye	Background	MR	C-1	MR	C-2	MR	C-3	MR	C-4	MR	C-5	MR	C-6	MR	C-7	MR	C-8	MRC-8	/Dup-1	MR	C-9	MRC	-10	MRC	C-11	MRC	-12	MRC	-13	MRC	C-14
Exposure Failways	Included?	C Risk	NC HQ	C Risk	NC HC	C Risk	NC HQ	C Risk	NC HQ	C Risk	NC HQ	C Risk	NC HQ	C Risk	NC HQ	C Risk	NC HQ	C Risk	NC HO												
Soil Ingestion, Dermal, Inhalation (Table G-1)	YES	6.5E-05	18.9	2.5E-04	70.7	1.0E-04	28.5	2.2E-04	60.0	6.8E-05	19.7	6.2E-05	18.0	8.0E-05	23.2	1.5E-04	40.7	1.3E-04	35.7	5.5E-05	15.6	4.6E-05	13.5	5.2E-05	14.7	3.5E-05	10.2	4.9E-05	13.9	7.7E-05	22.0
Soil Ingestion, Dermal, Inhalation (Table G-3)	NO	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0																

Notes:

all soil concentrations and screening levels in mg/kg

C = cancer based on a Target Risk Level = 1E-06 HI = noncancer Hazard Index = Σ HQ HQ = noncancer Hazard Quotient NA = Not applicable NC = noncancer based on a Target Hazard Quotient = 1.0 Appendix H. Homegrown Produce Risk Evaluation

Homegrown Produce Evaluation

1.0 Methodology

Constituent concentrations in plants were calculated based on the potential root uptake of constituents from soil. These calculations are based on the equations provided in USEPA's Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities (Combustion Guidance, EPA 2005a) and outlined below.

2.0 Concentration in Aboveground Vegetation

Potential concentrations in plant tissue due to root uptake in exposed and protected aboveground produce were estimated by:

$$Pr_{ag} = Sc \times Br_{ag}$$

Where:

 PR_{ag} = concentration of constituent in above ground produce due to root uptake (mg/kg)

Sc = soil concentration over exposure duration (mg/kg)

Br_{ag} = plant-soil bioconcentration factor for aboveground produce [mg COPC/kg dry weight (DW) plant]/[mg COPC/kg soil]

 Br_{ag} for inorganics was obtained from Baes et al. (1984) and from the companion Combustion Guidance database (EPA 2005b).

3.0 Concentration in Belowground Vegetation

Potential concentrations in belowground vegetation were estimated by:

$$PR_{bg} = Sc \ x \ Br_{bg} \ x \ VG_{bg}$$

Where:

 PR_{bg} = concentration of constituent in belowground vegetables (mg/kg) Sc = soil concentration over exposure duration (mg/kg)

Br_{bg} = plant-soil bioconcentration factor for belowground produce [mg COPC/kg dry weight (DW) plant]/[mg COPC/kg soil]

Br_{bg} for inorganics was obtained from Baes et al. (1984) and from the companion Combustion Guidance database (EPA 2005b).

Daily constituent intake from produce is calculated based on the amount of produce ingested per day, the estimated concentration of constituents in the produce, and the percentage of produce ingested that is homegrown as shown in the following equation:

$$CDI_{veg} = \frac{\left[(PR_{ag} \times IR_{ag}) + \left[(PR_{bg} \times IR_{bg}) \times F_{veg} \times ED \times EF \times UC\right]}{BW \times AT}$$

Where:

- CDI_{veg} = chronic daily intake of COPCs from homegrown vegetables (mg/kg-d)
- PR_{ag} = concentration of COPCs in homegrown aboveground vegetables due to root uptake (mg/kg)
- IR_{ag} = consumption rate of homegrown aboveground vegetables (mg/d)
- PR_{bg} = concentration of COPCs in homegrown belowground vegetables due to root uptake (mg/kg)
- IR_{bg} = consumption rate of homegrown belowground vegetables (mg/d)
- F_{veg} = fraction of homegrown vegetables that are contaminated (unitless)
- EF = Exposure Frequency (d/yr)
- ED = Exposure Duration (yr)
- UC = Units Conversion, 1E-06 (kg/mg)
- AT = Averaging time (d)
- BW = Body Weight (kg)

Consumption rates of the two plant groups (aboveground and belowground) and fractions contaminated are based on information presented in Chapter 13 of EPA's 2011 Exposure Factors Handbook (EPA, 2011).

4.0 References

- Baes, C.F., R.D. Sharp, A.L. Sjoreen, and R.W. Shor. (1984). A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture. Prepared by the Oak Ridge National Laboratory, Oak Ridge, Tennessee for the U.S. Department of Energy. September.
- U.S. Environmental Protection Agency (USEPA). (2005a). *Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities*. Final. EPA 530-R-05-006. September.
- U.S. Environmental Protection Agency (USEPA). (2005b). *The Hazardous Waste Companion Database*. Available at: <u>http://www.epa.gov/epaoswer/hazwaste/combust/risk.htm</u>.
- U.S. Environmental Protection Agency (USEPA). (2011). *Exposure Factors Handbook*. 2011 Edition. Chapter 13: Intake of Home-Produced Foods. Washington, DC: Office of Research and Development, National Center for Environmental Assessment. EPA/600/R-09/052F. September.

0070		MRC-1			MRC-2			MRC-3			MRC-4			MRC-5			MRC-6		
COPC	Conc (mg/kg)	C Risk	NC HQ	Co (mg															
Aluminum	9,200		0.31	19,000		0.63	17,000		0.57	9,800		0.33	23,000		0.77	17,000		0.57	21,
Arsenic	7.1	2.3E-04	1.37	28	9.0E-04	5.39	11	3.5E-04	2.12	24	7.7E-04	4.62	7.5	2.4E-04	1.45	6.8	2.2E-04	1.31	8
Barium	99		0.14	110		0.15	150		0.21	110		0.15	600		0.83	170		0.23	5
Beryllium	0.57		0.01	0.53		0.01	0.93		0.01	0.58		0.01	0.61		0.01	0.48		0.01	0.
Chromium, Tota	22		0.001	57		0.002	46		0.001	87		0.003	46		0.001	43		0.001	5
Cobalt	7.1		4.00	19		10.71	17		9.58	16		9.02	15		8.46	12		6.77	1
Copper	20		1.73	53		4.59	44		3.81	36		3.12	44		3.81	28		2.42	6
Lead	82			79			31			23			11			31			3
Nickel	19		0.08	56		0.23	50		0.21	200		0.82	44		0.18	40		0.16	e
Vanadium	30		0.28	70		0.66	60		0.57	30		0.28	69		0.65	59		0.56	(
Zinc	160		0.78	82		0.399	210		1.022	56		0.272	65		0.316	66		0.321	1
Total C Risk &	NC HI	2.E-04	8.7		9.E-04	22.8		4.E-04	18.1		8.E-04	18.6		2.E-04	16.5		2.E-04	12.4	

Notes:

all soil concentrations and screening levels in mg/kg

Bold indicates detection above laboratory reporting limit.

[a] All soil concentrations protective of produce ingestion assume daily ingestion of home-grown produce consisting of aboveground and belowground fruits and vegetables, as presented in USEPA's Exposure Factors Handbook (USEPA, 2011).

< = not detected at or above specified laboratory reporting limit

C = cancer based on a Target Risk Level = 1E-06

 $HI = noncancer Hazard Index = \Sigma HQ$

HQ = noncancer Hazard Quotient

mg/kg = milligrams per kilogram NC = noncancer based on a Target Hazard Quotient = 1.0

ND = not detected in soil

USEPA = United States Environmental Protection Agency

Reference:

USEPA, 2011. Exposure Factors Handbook, Chapter 13. Intake of Home-Produced Foods. National Center for Environmental Assessment, Office of Research and Development, Washington, D.C. EPA/600/R-09/052F. September. Available online at: https://www.epa.gov/expobox/about-exposure-factors-handbook

Table H-1

Individual Sample Residential Soil Risks from Home-Grown Produce Ingestion Spent Catalyst Release from Martinez Refining Company

MRC-8 /Dup-1 MRC-7 MRC-8 MRC-9 MRC-10 MRC-11 MRC-12 MRC-13 Conc C Risk NC HQ Conc C Risk NC HQ C Risk NC HQ Conc Conc Conc Conc Conc C Risk NC HQ C Risk NC HQ C Risk NC HC C Risk NC HQ C Risk NC H (mg/kg) mg/kg ng/kg mg/kg) mg/kg ng/kg mg/kg)
 19,000
 - 0.63
 18,000
 - 0.60
 9,300
 - 0.31

 16.0
 5.2E-04
 3.08
 14.0
 4.5E-04
 2.70
 6.1
 2.0E-04
 1.18

 0.31
 15,000
 - 0.50

 1.18
 5.1
 1.6E-04
 0.98
 10,000--0.335.71.8E-041.10 ,000 15,000 8,900 0.30 0.50 0.70 -----1.3E-04 0.75 **5.4** 1.7E-04 1.04 **3.8** 2.8E-04 1.70 3.9 0.18 **100** 0.01 **0.73** 130 1.2 0.18 ---0.77 0.18 130 130 --0.14 --98 0.13 86 0.12 90 -- 0.12 60 ---------0.64 0.01 --0.01 0.01 --0.01 0.01 --0.01 .62 0.77 0.01 0.69 0.65 0.55 ------0.002 24 0.001 64 0.002 56 0.001 27 --0.001 29 0.001 20 16 0.000 ---------------2.88 3.66 --10.15 8.46 15 6.3 6.20 7.9 4.45 5.1 6.5 18 15 ------8.46 --3.55 11 ---------0.95 5.46 --0.25 30 2.60 1.99 0.68 --48 4.16 43 3.72 14 1.21 23 7.9 11 ----63 -------------) ----0.06 32 25 15 10 --13 --6.6 18 21 ---------------0.12 0.13 0.27 60 23 --0.09 30 13 65 0.25 31 14 60 ----------------0.27 59 79 0.28 30 0.28 0.61 70 0.66 64 --0.61 29 --0.56 34 0.32 30 --------64 -----0.535 0.428 82 0.384 59 0.287 32 0.156 0.20 88 0.399 64 0.311 41 -----3.E-04 20.2 5.E-04 17.9 5.E-04 16.9 2.E-04 7.1 2.E-04 11.5 2.E-04 8.8 1.E-04 5.4 2.E-04 6.6

		MRC-14		Resi Produc	dential Soil ce Risk-Based
ΗQ	Conc (mg/kg)	C Risk	NC HQ	(n	Goal ng/kg) [a]
0	14,000		0.47	30,053	NC
4	8.5	2.7E-04	1.64	0.03	C [NC = 5.19]
2	86		0.12	727	NC
1	0.88		0.01	89.8	NC
05	35		0.001	34,617	NC
6	9.9		5.58	1.8	NC
53	29		2.51	11.5	NC
	33			NA	
5	32		0.13	243	NC
8	54		0.51	106	NC
)0	270		1.314	206	NC
3		3.E-04	12.3		

															Sample I	D (mg/kg)															Upperbound
Analyte	MF	RC-1	M	RC-2	М	RC-3	М	RC-4	M	RC-5	М	RC-6	MF	RC-7	MF	RC-8	MRC-	8 /Dup-1	М	RC-9	M	RC-10	MR	C-11	MR	RC-12	MR	C-13	MF	RC-14	Background
	Original	Adjusted	Original	Adjusted	Original	Adjusted	Origina	I Adjusted	Original	Adjusted	Original	Adjusted	Original	Adjusted	Original	Adjusted	Original	Adjusted	Original	Adjusted	Origina	I Adjusted	Original	Adjusted	Original	Adjusted	Original	Adjusted	Original	Adjusted	(mg/kg)
Aluminum	9,200	-61800	19,000	-52000	17,000	-54000.00	9,800	-61200	23,000	-48000.0	17,000	-54000	21,000	-50000	19,000	-52000	18,000	-53000	9,300	-61700.0	15,000	-56000	10,000	-61000	15,000	-56000	8,900	-62100	14,000	-57000.0	71,000
Arsenic	7.1	-23.9	28	-3	11	-20.00	24	-7	7.5	-23.5	6.8	-24.2	8.8	-22.2	16.0	-15	14.0	-17	6.1	-24.9	5.1	-25.9	5.7	-25.3	3.9	-27.1	5.4	-25.6	8.5	-22.5	31
Barium	99	-1401	110	-1390	150	-1350	110	-1390	600	-900	170	-1330	560	-940	130	-1370	130	-1370	100	-1400	130	-1370	98	-1402	86	-1414	90	-1410	86	-1414	1,500
Beryllium	0.57	-2.43	0.53	-2.47	0.93	-2.07	0.58	-2.42	0.61	-2.39	0.48	-2.52	0.62	-2.38	0.77	-2.23	0.69	-2.31	0.73	-2.27	1.2	-1.8	0.64	-2.36	0.65	-2.35	0.55	-2.45	0.88	-2.12	3
Chromium, Total	22	-1668	57	-1633	46	-1644	87	-1603	46	-1644	43	-1647	51	-1639	64	-1626	56	-1634	24	-1666	27	-1663	29	-1661	20	-1670	16	-1674	35	-1655	1,690
Cobalt	7.1	-128.9	19	-117	17	-119	16	-120	15	-121	12	-124	18	-118	15	-121	15	-121	6.3	-129.7	11	-125	7.9	-128.1	5.1	-130.9	6.5	-129.5	9.9	-126.1	136
Copper	20	-79.7	53	-46.7	44	-55.7	36	-63.7	44	-55.7	28	-71.7	63	-36.7	48	-51.7	43	-56.7	14	-85.7	30	-69.7	23	-76.7	7.9	-91.8	11	-88.7	29	-70.7	99.7
Lead	82	-165	79	-168	31	-216	23	-224	11	-236	31	-216	31	-216	32	-215	25	-222	15	-232	10	-237	13	-234	6.6	-240.4	18	-229	33	-214	247
Molybdenum	<2.5	ND	<2.4	ND	<2.1	ND	<2.7	ND	<2.4	ND	<2.5	ND	<2.4	ND	<2.3	ND	<2.3	ND	<2.4	ND	<2.2	ND	<2.5	ND	<2.5	ND	<2.4	ND	<2.3	ND	3.3
Nickel	19	-2221	56	-2184	50	-2190	200	-2040	44	-2196	40	-2200	60	-2180	65	-2175	60	-2180	23	-2217	30	-2210	31	-2209	14	-2226	13	-2227	32	-2208	2,240
Selenium	<2.5	ND	<2.4	ND	<2.1	ND	<2.7	ND	<2.4	ND	<2.5	ND	<2.4	ND	<2.3	ND	<2.3	ND	<2.4	ND	<2.2	ND	<2.5	ND	<2.5	ND	<2.4	ND	<2.3	ND	7
Vanadium	30	-200	70	-160	60	-170	30	-200	69	-161	59	-171	64	-166	70	-160	64	-166	29	-201	59	-171	34	-196	30	-200	30	-200	54	-176	230
Zinc	160	-314	82	-392	210	-264	56	-418	65	-409	66	-408	110	-364	88	-386	82	-392	64	-410	79	-395	59	-415	32	-442	41	-433	270	-204	474
Chromium VI	<0.25	ND	<0.25	ND	<0.22	ND	<0.27	ND	<0.24	ND	<0.23	ND	<0.23	ND	<0.23	ND	<0.23	ND	<0.24	ND	<0.22	ND	<0.25	ND	<0.26	ND	<0.25	ND	<0.23	ND	NA

Notes:

Bold indicates detection above laboratory reporting limit.

< = not detected at or above specified laboratory reporting limit

Adjusted soil concentration = measured soil concentration - upperbound expected background range

mg/kg = milligrams per kilogram

NA = Not applicable

ND = not detected

		MRC-1			MRC-2			MRC-3			MRC-4			MRC-5			MRC-6
COPC	Adj Conc (mg/kg)	C Risk	NC HQ	Adj Conc (mg/kg)	C Risk	NC HQ	Adj Conc (mg/kg)	C Risk									
Aluminum	-61,800		0.00	-52,000		0.00	-54,000		0.00	-61,200		0.00	-48,000		0.00	-54,000	
Arsenic	-23.9	0.0E+00	0.00	-3	0.0E+00	0.00	-20	0.0E+00	0.00	-7	0.0E+00	0.00	-24	0.0E+00	0.00	-24	0.0E+0
Barium	-1,401		0.00	-1,390		0.00	-1,350		0.00	-1,390		0.00	-900		0.00	-1,330	
Beryllium	-2.43		0.00	-2.47		0.00	-2.07		0.00	-2.42		0.00	-2.39		0.00	-2.52	
Chromium, Total	-1,668		0.00	-1,633		0.00	-1,644		0.00	-1,603		0.00	-1,644		0.00	-1,647	
Cobalt	-128.9		0.00	-117		0.00	-119		0.00	-120		0.00	-121		0.00	-124	
Copper	-79.7		0.00	-47		0.00	-56		0.00	-64		0.00	-56		0.00	-72	
Lead	-165		NA	-168		NA	-216		NA	-224		NA	-236		NA	-216	
Nickel	-2,221		0.00	-2,184		0.00	-2,190		0.00	-2,040		0.00	-2,196		0.00	-2,200	
Vanadium	-200		0.00	-160		0.00	-170		0.00	-200		0.00	-161		0.00	-171	
Zinc	-314		0.00	-392		0.00	-264		0.00	-418		0.00	-409		0.00	-408	
Total C Risk &	& NC HI	0.E+00	0.0		0.E+00	0.0		0.E+00	0.0		0.E+00	0.0		0.E+00	0.0		0.E+00

Notes:

all soil concentrations and screening levels in mg/kg

Bold indicates detection above laboratory reporting limit.

< = not detected at or above specified laboratory reporting limit

C = cancer based on a Target Risk Level = 1E-06

 $HI = noncancer Hazard Index = \Sigma HQ$

HQ = noncancer Hazard Quotient mg/kg = milligrams per kilogram

NC = noncancer based on a Target Hazard Quotient = 1.0

ND = not detected in soil

RSL = Regional Screening Level

Table H-3 Individual Sample Residential Soil Risks from Ingestion of Homegrown Produce (Excluding Background) Spent Catalyst Release from Martinez Refining Company

MRC-8 /Dup-1 MRC-7 MRC-8 MRC-9 MRC-10 MRC-11 AdjAd (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)

 0.00
 -50,000

 0.00
 -22
 0.

 0.00
 -940
 0.00

 0.00
 -2.38
 0.00

 0.00
 -1,639
 0.00

 -50,000
 - 0.00
 -52,000
 - 0.00
 -53,000
 - 0.00
 -61,700

 -22
 0.0E+00
 0.00
 -15
 0.0E+00
 0.00
 -17
 0.0E+00
 0.00
 -25
 0.0

 -940
 - 0.00
 -1,370
 - 0.00
 -1,370
 - 0.00
 -1,400

 -2.38
 - 0.00
 -2.31
 - 0.00
 -2.27
 0.00

 0.00 -56,000 -----
 -25
 0.0E+00
 0.00

 -1,402
 - 0.00
 -25 0.0E+00 -27
 0.00
 -1,370
 -

 0.00
 -2.23
 -

 0.00
 -1,626
 - -1,414 ---2.35 0.00 **-2.31** 0.00 **-1,634** 0.00 --0.00 -1,670 ----0.00 -1,666 ---------0.00 0.00 0.00 ---121 ---121 ---131 -118 0.00 -130 0.00 --0.00 -52 -57 0.00 -86 -37 0.00 --0.00 -92 -215 -----216 --NA NA -222 NA -232 -240 NA NA --0.00 **-2,175** --0.00 **-160** --0.00 -2,180 0.00 **-2,210** --0.00 **-171** --0.00 0.00 -2,217 0.00 -2,209 0.00 -2,226 -2,180 --------0.00 -166 ----0.00 -166 --0.00 -201 0.00 **-196** --0.00 -200 0.00 -364 0.00 -386 0.00 **-392** 0.00 0.00 -395 0.00 -415 0.00 -----410 ---------442 0.0 0.E+00 0.0 0.E+00 0.0 0.E+00 0.0 0.E+00 0.0 0.E+00 0.0 0.E+00 0.0

М	RC-12			MRC-13			MRC-14		Resi	dential Soil
с	Risk	NC HQ	Adj Conc (mg/kg)	C Risk	NC HQ	Adj Conc (mg/kg)	C Risk	NC HQ	Go	al (mg/kg) [a]
		0.00	-62,100		0.00	-57,000		0.00	30,053	NC
0.0)E+00	0.00	-26	0.0E+00	0.00	-23	0.0E+00	0.00	0.03	C [NC = 5.19]
		0.00	-1,410		0.00	-1,414		0.00	727	NC
		0.00	-2.45		0.00	-2.12		0.00	89.8	NC
		0.00	-1,674		0.00	-1,655		0.00	34,617	NC
		0.00	-130		0.00	-126		0.00	1.8	NC
		0.00	-89		0.00	-71		0.00	11.5	NC
		NA	-229		NA	-214		NA	NA	
		0.00	-2,227		0.00	-2,208		0.00	243	NC
		0.00	-200		0.00	-176		0.00	106	NC
		0.00	-433		0.00	-204		0.00	206	NC
0.1	E+00	0.0		0.E+00	0.0		0.E+00	0.0		

Table H-4 Summary of Residential Soil Risks from Ingestion of Homegrown Produce Spent Catalyst Release from Martinez Refining Company

Exposure Pathways	Background	MRC	C-1	MR	C-2	MR	C-3	MRG	C-4	MRC	C-5	MR	C-6	MRC	C-7	MR	C-8	MRC-8	/Dup-1	MRO	C-9	MRC	-10	MRC	-11	MRC	-12	MRC	-13	MR	C-14
	Included?	C Risk	NC HQ	C Risk	NC HC	C Risk	NC HQ	C Risk	NC HQ	C Risk	NC HQ	C Risk	NC HQ	C Risk	NC HQ	C Risk	NC HQ	C Risk	NC HQ												
Home-Grown Produce Ingestion (Table H-1)	YES	2.3E-04	8.7	9.0E-04	22.8	3.5E-04	18.1	7.7E-04	18.6	2.4E-04	16.5	2.2E-04	12.4	2.8E-04	20.2	5.2E-04	17.9	4.5E-04	16.9	2.0E-04	7.1	1.6E-04	11.5	1.8E-04	8.8	1.3E-04	5.4	1.7E-04	6.6	2.7E-04	12.3
Home-Grown Produce Ingestion (Table H-3)	NO	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0	0.0E+00	0.0																

Notes:

all soil concentrations and screening levels in mg/kg

C = cancer based on a Target Risk Level = 1E-06

HI = noncancer Hazard Index = ∑HQ

HQ = noncancer Hazard Quotient

NA = Not applicable

NC = noncancer based on a Target Hazard Quotient = 1.0

Appendix I. Ecological Risk Evaluation

Table I-1 Individual Sample Ecological Soil Risks Spent Catalyst Release from Martinez Refining Company

Analuta	м	RC-1	MR	C-2	MR	C-3	M	RC-4	MR	C-5	MR	C-6	MR	C-7	MR	C-8	MRC-8	/Dup-1	MF	RC-9	MRC	C-10	MR	C-11	MRC	C-12	MR	C-13	MRC	C-14	Eco	logical Soil
Analyte	Conc	HQ	Conc	HQ	Conc	HQ	Conc	HQ	Conc	HQ	Conc	HQ	Conc	HQ	Conc	HQ	Conc	HQ	Conc	HQ	Conc	HQ	Conc	HQ	Conc	HQ	Conc	HQ	Conc	HQ	Scree	ning Level [a]
Aluminum	9,200		19,000		17,000		9,800		23,000		17,000		21,000		19,000		18,000		9,300		15,000		10,000		15,000		8,900		14,000		OK wh	en pH <u>></u> 5.5 [b]
Arsenic	7.1	0.28	28.0	1.12	11.0	0.44	24.0	0.96	7.5	0.30	6.8	0.27	8.8	0.35	16.0	0.64	14.0	0.56	6.1	0.24	5.1	0.20	5.7	0.23	3.9	0.16	5.4	0.22	8.5	0.34	25	NC
Barium	99.0	0.25	110.0	0.28	150.0	0.38	110.0	0.28	600.0	1.54	170.0	0.44	560.0	1.44	130.0	0.33	130.0	0.33	100.0	0.26	130.0	0.33	98.0	0.25	86.0	0.22	90.0	0.23	86.0	0.22	390	NC
Beryllium	0.6	0.11	0.5	0.11	0.9	0.19	0.6	0.12	0.6	0.12	0.5	0.10	0.6	0.12	0.8	0.15	0.7	0.14	0.7	0.15	1.2	0.24	0.6	0.13	0.7	0.13	0.6	0.11	0.9	0.18	5.0	NC
Chromium, Total	22.0		57.0		46.0		87.0		46.0		43.0		51.0	-	64.0		56.0		24.0		27.0	-	29.0		20.0		16.0		35.0		160	NA
Cobalt	7.1	0.14	19.0	0.38	17.0	0.34	16.0	0.32	15.0	0.30	12.0	0.24	18.0	0.36	15.0	0.30	15.0	0.30	6.3	0.13	11.0	0.22	7.9	0.16	5.1	0.10	6.5	0.13	9.9	0.20	50	NC
Copper	20.0	0.11	53.0	0.29	44.0	0.24	36.0	0.20	44.0	0.24	28.0	0.16	63.0	0.35	48.0	0.27	43.0	0.24	14.0	0.08	30.0	0.17	23.0	0.13	7.9	0.04	11.0	0.06	29.0	0.16	180	NC
Lead	82.0	2.56	79.0	2.47	31.0	0.97	23.0	0.72	11.0	0.34	31.0	0.97	31.0	0.97	32.0	1.00	25.0	0.78	15.0	0.47	10.0	0.31	13.0	0.41	6.6	0.21	18.0	0.56	33.0	1.03	32	NC
Molybdenum	<2.5	ND	<2.4	ND	<2.1	ND	<2.7	ND	<2.4	ND	<2.5	ND	<2.4	ND	<2.3	ND	<2.3	ND	<2.4	ND	<2.2	ND	<2.5	ND	<2.5	ND	<2.4	ND	<2.3	ND	6.9	NC
Nickel	19.0	0.15	56.0	0.43	50.0	0.38	200.0	1.54	44.0	0.34	40.0	0.31	60.0	0.46	65.0	0.50	60.0	0.46	23.0	0.18	30.0	0.23	31.0	0.24	14.0	0.11	13.0	0.10	32.0	0.25	130	NC
Selenium	<2.5	ND	<2.4	ND	<2.1	ND	<2.7	ND	<2.4	ND	<2.5	ND	<2.4	ND	<2.3	ND	<2.3	ND	<2.4	ND	<2.2	ND	<2.5	ND	<2.5	ND	<2.4	ND	<2.3	ND	2.4	NC
Vanadium	30.0	1.67	70.0	3.89	60.0	3.33	30.0	1.67	69.0	3.83	59.0	3.28	64.0	3.56	70.0	3.89	64.0	3.56	29.0	1.61	59.0	3.28	34.0	1.89	30.0	1.67	30.0	1.67	54.0	3.00	18	NC
Zinc	160.0	0.47	82.0	0.24	210.0	0.62	56.0	0.16	65.0	0.19	66.0	0.19	110.0	0.32	88.0	0.26	82.0	0.24	64.0	0.19	79.0	0.23	59.0	0.17	32.0	0.09	41.0	0.12	270.0	0.79	340	NC
Chromium VI	<0.25	ND	<0.25	ND	<0.22	<0.23	<0.27	ND	<0.24	ND	<0.23	ND	<0.23	ND	<0.23	ND	<0.23	ND	< 0.24	ND	<0.22	ND	<0.25	ND	<0.26	ND	<0.25	ND	<0.23	ND	10	NC
Total NC F		5.8		9.2		6.9		6.0		7.2		5.9		7.9		7.3		6.6		3.3		5.2		3.6		2.7		3.2		6.2		

Notes:

all soil concentrations and screening levels in mg/kg

Bold indicates detection above laboratory reporting limit.

[a] All ecological screening levels taken from San Francisco Bay Summary of Environmental Screening Levels (ESLs) for Terrestrial Habitat Levels in Significantly Vegetated Area, except aluminum.

[b] As recommended in USEPA's EcoSSL for aluminum.

< = not detected at or above specified laboratory reporting limit

 $HI = noncancer Hazard Index = \Sigma HQ$

HQ = noncancer Hazard Quotient

mg/kg = milligrams per kilogram

ND = not detected in soil

Table I-2 Adjusted Soil Concentration (Removal of Background Concentration) Spent Catalyst Release from Martinez Refining Company

															Sam	ple ID															Upperbound
Analyte	М	RC-1	MF	RC-2	M	IRC-3	М	RC-4	М	RC-5	M	RC-6	M	RC-7	MF	RC-8	MRC-	8 /Dup-1	М	RC-9	MR	C-10	MR	C-11	MR	RC-12	MF	RC-13	MF	RC-14	Expected Background
	Original	Adjusted	Original	Adjusted	Original	Adjusted	Origina	Adjusted	Original	Adjusted	Origina	Adjusted	Range																		
Aluminum	9,200	-61800	19,000	-52000	17,000	-54000.00	9,800	-61200	23,000	-48000.0	17,000	-54000	21,000	-50000	19,000	-52000	18,000	-53000	9,300	-61700.0	15,000	-56000	10,000	-61000	15,000	-56000	8,900	-62100	14,000	-57000.0	71,000
Arsenic	7.1	-23.9	28	-3	11	-20.00	24	-7	7.5	-23.5	6.8	-24.2	8.8	-22.2	16.0	-15	14.0	-17	6.1	-24.9	5.1	-25.9	5.7	-25.3	3.9	-27.1	5.4	-25.6	8.5	-22.5	31
Barium	99	-1401	110	-1390	150	-1350	110	-1390	600	-900	170	-1330	560	-940	130	-1370	130	-1370	100	-1400	130	-1370	98	-1402	86	-1414	90	-1410	86	-1414	1,500
Beryllium	0.57	-2.43	0.53	-2.47	0.93	-2.07	0.58	-2.42	0.61	-2.39	0.48	-2.52	0.62	-2.38	0.77	-2.23	0.69	-2.31	0.73	-2.27	1.2	-1.8	0.64	-2.36	0.65	-2.35	0.55	-2.45	0.88	-2.12	3
Chromium, Total	22	-1668	57	-1633	46	-1644	87	-1603	46	-1644	43	-1647	51	-1639	64	-1626	56	-1634	24	-1666	27	-1663	29	-1661	20	-1670	16	-1674	35	-1655	1,690
Cobalt	7.1	-128.9	19	-117	17	-119	16	-120	15	-121	12	-124	18	-118	15	-121	15	-121	6.3	-129.7	11	-125	7.9	-128.1	5.1	-130.9	6.5	-129.5	9.9	-126.1	136
Copper	20	-79.7	53	-46.7	44	-55.7	36	-63.7	44	-55.7	28	-71.7	63	-36.7	48	-51.7	43	-56.7	14	-85.7	30	-69.7	23	-76.7	7.9	-91.8	11	-88.7	29	-70.7	99.7
Lead	82	-165	79	-168	31	-216	23	-224	11	-236	31	-216	31	-216	32	-215	25	-222	15	-232	10	-237	13	-234	6.6	-240.4	18	-229	33	-214	247
Molybdenum	<2.5	ND	<2.4	ND	<2.1	ND	<2.7	ND	<2.4	ND	<2.5	ND	<2.4	ND	<2.3	ND	<2.3	ND	<2.4	ND	<2.2	ND	<2.5	ND	<2.5	ND	<2.4	ND	<2.3	ND	3.3
Nickel	19	-2221	56	-2184	50	-2190	200	-2040	44	-2196	40	-2200	60	-2180	65	-2175	60	-2180	23	-2217	30	-2210	31	-2209	14	-2226	13	-2227	32	-2208	2,240
Selenium	<2.5	ND	<2.4	ND	<2.1	ND	<2.7	ND	<2.4	ND	<2.5	ND	<2.4	ND	<2.3	ND	<2.3	ND	<2.4	ND	<2.2	ND	<2.5	ND	<2.5	ND	<2.4	ND	<2.3	ND	7
Vanadium	30	-200	70	-160	60	-170	30	-200	69	-161	59	-171	64	-166	70	-160	64	-166	29	-201	59	-171	34	-196	30	-200	30	-200	54	-176	230
Zinc	160	-314	82	-392	210	-264	56	-418	65	-409	66	-408	110	-364	88	-386	82	-392	64	-410	79	-395	59	-415	32	-442	41	-433	270	-204	474
Chromium VI	< 0.25	ND	< 0.25	ND	< 0.22	ND	< 0.27	ND	< 0.24	ND	< 0.23	ND	< 0.24	ND	<0.22	ND	< 0.25	ND	< 0.26	ND	< 0.25	ND	< 0.23	ND	NA						

Notes:

Bold indicates detection above laboratory reporting limit.

< = not detected at or above specified laboratory reporting limit

Adjusted soil concentration = measured soil concentration - upperbound expected background range

mg/kg = milligrams per kilogram NA = Not applicable ND = not detected

Table I-3 Individual Sample Ecological Soil Risks (Excluding Background) Spent Catalyst Release from Martinez Refining Company

Analyta	MR	C-1	MRC	-2	MRC	-3	MRC	-4	MRC	-5	MRC	-6	MRC	-7	MRC	-8	MRC-8 / 1	Dup-	MRC	;-9	MRC-	10	MRC-	·11	MRC	-12	MRC-	13	MRC-	-14	Eco	logical Soil
Analyte	Adj Conc	NC HQ	Adj Conc	NC HQ	Adj Conc	NC HQ	Adj Conc	NC HQ	Adj Conc	NC HQ	Adj Conc	NC HQ	Adj Conc	NC HQ	Adj Conc	NC HQ	Adj Conc	NC HQ	Scree	ning Level [a]												
Aluminum	-61,800		-52,000		-54,000		-61,200		-48,000		-54,000		-50,000		-52,000		-53,000		-61,700		-56,000		-61,000		-56,000		-62,100		-57,000		OK w	hen pH <u>></u> 5.5
Arsenic	-24	0.00	-3	0.00	-20	0.00	-7	0.00	-24	0.00	-24	0.00	-22	0.00	-15	0.00	-17	0.00	-25	0.00	-26	0.00	-25	0.00	-27	0.00	-26	0.00	-23	0.00	25	NC
Barium	-1,401	0.00	-1,390	0.00	-1,350	0.00	-1,390	0.00	-900	0.00	-1,330	0.00	-940	0.00	-1,370	0.00	-1,370	0.00	-1,400	0.00	-1,370	0.00	-1,402	0.00	-1,414	0.00	-1,410	0.00	-1,414	0.00	390	NC
Beryllium	-2	0.00	-2	0.00	-2	0.00	-2	0.00	-2	0.00	-3	0.00	-2	0.00	-2	0.00	-2	0.00	-2	0.00	-2	0.00	-2	0.00	-2	0.00	-2	0.00	-2	0.00	5.0	NC
Chromium, Total	-1,668		-1,633		-1,644		-1,603		-1,644		-1,647	-	-1,639	-	-1,626		-1,634	-	-1,666		-1,663		-1,661	-	-1,670	-	-1,674		-1,655		160	NA
Cobalt	-129	0.00	-117	0.00	-119	0.00	-120	0.00	-121	0.00	-124	0.00	-118	0.00	-121	0.00	-121	0.00	-130	0.00	-125	0.00	-128	0.00	-131	0.00	-130	0.00	-126	0.00	50	NC
Copper	-80	0.00	-47	0.00	-56	0.00	-64	0.00	-56	0.00	-72	0.00	-37	0.00	-52	0.00	-57	0.00	-86	0.00	-70	0.00	-77	0.00	-92	0.00	-89	0.00	-71	0.00	180	NC
Lead	-165	0.00	-168	0.00	-216	0.00	-224	0.00	-236	0.00	-216	0.00	-216	0.00	-215	0.00	-222	0.00	-232	0.00	-237	0.00	-234	0.00	-240	0.00	-229	0.00	-214	0.00	32	NC
Nickel	-2,221	0.00	-2,184	0.00	-2,190	0.00	-2,040	0.00	-2,196	0.00	-2,200	0.00	-2,180	0.00	-2,175	0.00	-2,180	0.00	-2,217	0.00	-2,210	0.00	-2,209	0.00	-2,226	0.00	-2,227	0.00	-2,208	0.00	130	NC
Vanadium	-200	0.00	-160	0.00	-170	0.00	-200	0.00	-161	0.00	-171	0.00	-166	0.00	-160	0.00	-166	0.00	-201	0.00	-171	0.00	-196	0.00	-200	0.00	-200	0.00	-176	0.00	18	NC
Zinc	-314	0.00	-392	0.00	-264	0.00	-418	0.00	-409	0.00	-408	0.00	-364	0.00	-386	0.00	-392	0.00	-410	0.00	-395	0.00	-415	0.00	-442	0.00	-433	0.00	-204	0.00	340	NC
Total NC H	HI	0.0		0.0		0.0		0.0		0.0		0.0		0.00		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		

Notes:

all soil concentrations and screening levels in mg/kg Bold indicates detection above laboratory reporting limit.

< = not detected at or above specified laboratory reporting limit

HI = noncancer Hazard Index = Σ HQ

HQ = noncancer Hazard Quotient

mg/kg = milligrams per kilogram

NC = noncancer based on a Target Hazard Quotient = 1.0

ND = not detected in soil

Table I-4Summary of Ecological Soil RisksSpent Catalyst Release from Martinez Refining Company

Eveneure Dethwaya	Background	MRC-1	MRC-2	MRC-3	MRC-4	MRC-5	MRC-6	MRC-7	MRC-8	MRC-8 /Dup-1	MRC-9	MRC- 10	MRC- 11	MRC- 12	MRC- 13	MRC- 14
Exposure Pathways	Included?	NC HQ	NC HQ	NC HQ	NC HQ	NC HQ	NC HQ	NC HQ								
Ecological Exposure to Soil (Table I-1)	YES	5.75	9.21	6.90	5.97	7.21	5.95	7.93	7.34	6.61	3.30	5.22	3.60	2.73	3.20	6.17
Ecological Exposure to Soil (Table I-3)	NO	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Notes:

all soil concentrations and screening levels in mg/kg

C = cancer based on a Target Risk Level = 1E-06

HI = noncancer Hazard Index = Σ HQ

HQ = noncancer Hazard Quotient

NA = Not applicable

NC = noncancer based on a Target Hazard Quotient = 1.0

Appendix J. Responses to MRC Oversight Committee Comments

Comment	Section of Report	TRC Response	Date Verified	CCH / Oversight Committee Reply to Response
CCH Comment: The draft report as given to CCH was in multiple pieces and parts. CCH is requesting that the final report be combined into one PDF. Additionally when the PDF is compiled CCH is requesting that all tables etc. be reviewed for formatting. The current PDF that CCH put together is very hard to read as print is small on some pages to have the entire table fit. CCH also recommends the tables be reviewed and internal TRC comments be scrubbed. Only relevant information should be presented. Please review entire report to ensure consistent font, labeling, etc.	Overall Report	Entire report will be reviewed, comments scrubbed, and pdf'd into one file.	8/21/2023	No Further Action Required. Oversight Committee Accepts Change
On table 3 add mg/kg and the last cell on the top right has "are" instead of area. [NH note, I believe Are is correct vs Area TRC please confirm]	Table 3	"mg/kg" has been added to the data column headers and screening level column headers in Table 3, and other tables in the report. No change required re top right cell; use of "are" is correct.	8/21/2023	No Further Action Required. Oversight Committee Accepts Change
My only concern comes from my experience discussing the preliminary findings with neighbors in the area, and is that the layman may need some assistance in the form of a flowchart that describes the sampling and testing process. Or maybe a simple accompanying document that would provide a guide to the report.	General Comment	TRC created a project timeline/flowchart which describes the site investigation events, which is labeled Chart 1: Site Investigation Timeline.	8/21/2023	No Further Action Required. Oversight Committee Accepts Change
The report should address further the decision for 6" depth of sampling and why samples were not taken deeper	Section 2.1.2	Will add the following text to Section 2.1.2: According to the California Department of Toxic Substances Control (DTSC), Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note Number 4: Guidance for Screening Level Human Health Risk Assessments issued March 29, 2022, "discrete soil samples should be collected from the surface (0 to 6 inches bgs),which is particularly important for contaminants such as lead which generally have limited vertical mobility in the soil column". The analytes in spent catalyst are metals, similar to lead, that have limited vertical mobility in the soil column. Therefore, collecting 0 to 6 inches bgs soil samples best captures the soil impacts from deposition of airborne spent catalyst; collection of samples from a 0 to 1.0 ft bgs could potentially "dilute" determination of impacts expected to be largely present in the upper 6 inches bgs.	8/21/2023	No Further Action Required. Oversight Committee Accepts Change
On page vi and page 1, the catalyst dust is described as "metallic" dust: is "metallic" a good descriptor of the dust? On page 10, there appears to be a problem with a range described as "zero $2x10^4$ to $1x10^{-3}$." Also, the period is missing.	Pages vi, 1, and 10	The composition of the spent catalyst dust is made up of metals; therefore, the adjective "metallic" is appropriate. No text change needed. Formatting errors noted will be corrected, including removal of the word "zero" and addition of a missing period.	8/21/2023	No Further Action Required. Oversight Committee Accepts Change
I don't understand how the levels of Arsenic and Lead exceed the residential soil health standard, then when the background is taken out they are deemed ok (within the range of <i>background</i>)?This seems contradictory. Does this mean the recent release isn't adding to anything that isn't already there??	General Comment	As stated in Section 3.1, metals occur naturally in soil. Therefore, it is important to understand this natural occurrence and what range of concentrations occur naturally, which is called the expected background range, which can sometimes occur at concentrations greater than what would be acceptable for ecological and human health soil standards. Therefore, when evaluating the nature and extent of the November 2022 release and assessing risks related to this release, USEPA and DTSC allows for the removal of the expected background range when assessing risks. Based on the screening level assessment of the soil data, which includes a comparison to an expected background range, TRC concluded the following: None of the metals analyzed exceed the expected regional background range, Two metals (arsenic and lead) exceed residential direct contact screening levels, however these exceedances are not likely associated with the spent catalyst material, as the proportions of the metals found was inconsistent with that of the spent catalyst composition in the bulk material or dust (wipe samples). 	8/21/2023	No Further Action Required. Oversight Committee Accepts Change
4.1 includes additional consideration of background soil concentrations in the risk evaluation – is this a judgement call by TRC to say this is an industrial location and that somehow has reduced findings?	General Comment, please adjust report if deemed necessary to clarify	See Response to Comment #7. In addition, "about appropriate land uses" will be removed from the following statement "This information is useful for risk management decisions about appropriate land uses and for public transparency." in Section 4.1.1. Determination of expected background soil range is independent of land use and is based on multiple literature studies conducted in the region.	8/21/2023	No Further Action Required. Oversight Committee Accepts Change

Comment	Section of Report	TRC Response	Date Verified	CCH / Oversight Committee Reply to Response
The description for 4.1 Methodology last paragraph says, "If any calculation of risk exceeds the point of departure, current and future risk evaluation and/or risk management decisions may be warranted" Is this a judgment call by TRC or has the data truly shown there is no risk "both qualitative and quantitative "The same concerns as above for the findings in 4.3 concerning exceedances for Arsenic, Barium, Lead, Nickel, and VanadiumI believe we have identified soil that is unhealthy to the community – what is our course of action? Also, is there a way to implore them to sample more?	General Comment, please adjust report if deemed necessary to clarify	The purpose of this report is to focus on health and environmental impacts related to airborne deposition of spent catalyst using a screening level risk assessment process which is adopted and utilized by both USEPA and DTSC. Based on the screening level assessment of the soil data, which includes a comparison to an expected background range, TRC concluded the following: •None of the metals analyzed exceed the expected regional background range, •Two metals (arsenic and lead) exceed residential direct contact screening levels, however these exceedances are not likely associated with the spent catalyst material, as the proportions of the metals found did not match that of the spent catalyst composition in the bulk material or dust (wipe samples). Based on these findings, TRC does not recommend additional sampling or further evaluation. No text change required.	8/21/2023	No Further Action Required. Oversight Committee Accepts Change

Commenter Name	PDF Page #	Comment	Section of Report	Response Category	TRC Response
		1a. The scientific explanation for why the 14 sites were picked was not clearly articulated. Sure, the sample sites were informed by the BAAQMD model. However, that model, as presented at the city meeting, was based on assumptions that have significant effects on the model's output. Mainly, plume and weather maps rely on a large data set to make informed conclusions – they had a limited dataset (2 days of weather) to inform the model which means the model's predictions could be vastly different from reality. My suggestion is that 14 spots all detecting no notable increases, is not a sufficient samples size to properly conclude there is no health risk. 14 samples lack the statistical power to properly report a lack of risk. Finding zero everywhere is not a good answer. We would want to find data that supports that the model is correct in predicting plume and fallout. Then we can assess for risk. "No visible dust was observed at any of the sample locations." No surprise here. Samples were taken May 4-5 when the release was in November 2022 after the heaviest rainfall in CA in a decade. Maybe soil samples aren't going to be sufficient to assess the risk. [County to respond re timing of investigation]	2.0 Soil Investigation	MR-1; Timing of Investigation	See MR-1 Soil sampling locations were determined based on the BAAQMD dispersion modeling and associated plume map as well as input from the community (e.g., reports of observed dust deposition). The modeling inputs, assumptions and model results developed by the BAAQMD were critically reviewed by TRC's Certified Consulting Meteorologist, Gale Hoffnagle, who has previously provided expert witness input for three other catalyst dust releases by refineries within the United States. As articulated in MR-1, the locations selected for collection of soil samples should provide a representative data set to serve as inputs for the subject "worst-case" screening level risk assessment. The identified release zone, as determined by both physical observations provided by the affected community and the BAAQMD's dispersion modeling, constitutes the most technically sound area for selection of soil sample locations for this screening level assessment. County Input re Timing of Investigation CCH acknowledges that the timeline from the incident to obtaining soil sampling results was quite long. MRC's initial failure to notify the county delayed the determination of this incident as a Major Chemical Accident or Release (MCAR) by about 3 weeks. This designation was crucial to the development of an Oversight Committee. The process of forming the oversight committee, selecting a contractor, and initiating the work contributed to the delay. The process itself is set very intentionally to have a very strong focus on environmental justice by having a transparent and public process. CCH is working to be more nimble when incidents of this severity occur. CCH has heard the concerns from the community and will be instituting changes to our procedure for the future.
		1b. "the soil samples do not appear to have the same composition as the spent catalyst dust or bulk samples." I would not expect the soil samples to have the same composition. The soil samples should have other things plus elevated levels of the release dust. Different ratios of the chemicals of interest would be expected. We do not have a sample of the soil prior to the release so there is not a good understanding of baseline.	3.0 Data Evaluation	Sample Composition	The report acknowledges that "while it is possible that some catalyst dust is mixed in with soil in the community, the soil samples do not appear to have the same composition as the spent catalyst dust or bulk samples." The catalyst dust is comprised predominantly of aluminum and vanadium; however, vanadium was not found in significant quantities in any of the May 2023 soil samples. If catalyst dust was present in these soil samples, vanadium would be detected at higher concentrations. No text change required.
		"However, aerated garden soils in neighborhoods surrounding MRC would generally contain the less soluble, less mobile, and less phytoavailable pentavalent arsenic. – There needs to be a citation for this – how are you sure this is true? Provide a reference for this statement.	4.2.1 Arsenic Uptake by Plants	Arsenic Uptake	Reduced states of arsenic (more mobile, soluble, and phytoavailable in soil) require garden soil to be under water (e.g., flooded rice paddy), which is unlikely in the neighborhoods surrounding MRC. No text change required.
Tameji Eames	3-4	1d. "None of the metals analyzed exceed the expected regional background range," – What is the background range for an area not proximate to a refinery? Say Danville Saying that the soil samples do not exceed background levels is not the same as saying there is a healthy concentration of trace elements (listed on page 5) in the soil where sampled.	5.0 Conclusions	Background	Although anthropogenic sources of metals can not be clearly distinguished from naturally-occurring background levels, elevated arsenic concentrations at MRC-2, MRC-4, and MRC-8 compared to all other samples (see Response Figure 1) can be attributed to a geologic classification called the Great Valley Formation (see Response Figure 2), where arsenic "concentrations measured in the Great Valley Formation are about double those of other units" (LBNL, 2009). The term "healthy concentration of trace elements" is never used in the Draft SLHHERA. The purpose of this report is to focus on health and environmental impacts related to airborne deposition of spent catalyst using a screening level risk assessment process which is adopted and utilized by both USEPA and DTSC. Based on the screening level assessment of the soil data, which includes a comparison to an expected background range, RC concluded the following: None of the metals analyzed exceed residential direct contact screening levels, however these exceedances are not likely associated with the spent catalyst material, as the proportions of the metals found did not match that of the spent catalyst composition in the bulk material or dust (wipe samples). Based on these findings, TRC does not recommend additional sampling or further evaluation. No text change required.
		1e. "Two metals (arsenic and lead) exceed residential direct contact screening levels, however these exceedances are not likely associated with the spent catalyst material, as the proportions of the metals found did not match the spent catalyst composition in the bulk material or dust (wipe samples)." – This statement does not make sense. The lead in the ground could have come from the catalyst. Why would you expect the proportions of metals in the soil to match the proportions of the catalyst exactly? MRC has released chemicals for years so the soil is already contaminated. There would not be equal ratios if there were already high lead concentration contaminated soil. We do not have a baseline lead measurement for this soil prior to the catalyst release so how can you say this is a non-issue when the levels exceed the residential direct screening levels? And the term "not likely." This should come with a confidence interval. How "non-likely?" This is not a quantifiable measure and the whole point of testing is to quantify! I am disappointed with the superficial effort put forth with this sampling paradigm and report. I would like to see a significantly larger breadth and depth of testing to 1] support the BAAQMD plume model (nothing in the risk assessment report confirms or denies the model was well-informed), and 2) to ensure that the food leat out of my garden is safe because this report does neither.	5.0 Conclusions	Background	The purpose of this report is to focus on health and environmental impacts related to airborne deposition of spent catalyst using a screening level risk assessment process which is adopted and utilized by both USEPA and DTSC. The focus of this report was on soil conditions due only to the airborne deposition of spent catalyst that occurred in November 2022, not on baseline soil concentrations prior to the release, which may be due to anthropogenic (including prior MRC operations) or naturally-occurring background conditions. The bulk sample collected from MRC appears to mostly contain vanadium, followed by nickel, and then barium. The lead concentration of the bulk sample collected from MRC (12 mg/kg) is below its residential soil health standard (80 mg/kg) and much lower than many of the soil samples collected in May 2023, as shown in Table 4 of the Draft SLIHERA. The statement will be modified as follows "Two metals (arsenic and lead) exceed residential direct contact screening levels, however these exceedances do not represent the spent catalyst material, as the proportions of the metals found did not match the spent catalyst composition in the bulk material or dust (wipe samples)." The depth of sampling was determined based on California DTSC, HERO Human Health Risk Assessment (HHRA) Note Number 4: <i>Guidance for Screening Level Human Health Risk Assessments</i> issued March 29, 2022, in which "discrete soil samples should be collected from the surface (0 to 6 inches bgs)which is particularly important for contaminants such as lead and other metals which generally have limited vertical mobility in the soil column. Therefore, collecting 0 to 6 inches bgs soil samples best catalyters the soil impacts from deposition of airborne spent catalyst collection of samples from a 0 to 1.0 ft bgs depth or deeper could potentially "dilute" determination of impacts expected to be largely present in the upper 6 inches bgs.

Commenter Name	PDF Page #	Comment	Section of Report	Response Category	TRC Response
Thomas Kellogg	12	2.0 How did you conclude that the release did not exceed regional background levels when they are expressed in concentrations, e.g., ug/L, and your analyses are expressed in ug/wipe.	General Comment	Background	Although wipe samples use different units (µg/wipe), they indicated a presence of several metals (as shown in Table 1 of the Draft SLHHERA), which were compared to their proportion in both the source bulk sample (B-6) and bulk samples collected from the community. The bulk sample collected from MRC appears to mostly contain vanadium, followed by nickel, and then barium. Other metals analyzed, but not found in large quantities were copper, zinc, total chronium, lead, molyddenum, arsenic, selenium, and beryllium. A comparison between bulk samples and expected background range was not conducted, as that was not the focus of the Draft SLHHERA (wipe and bulk samples helped to identify the chemical composition of the catalyst dust, and thereby informed the analytical scope of testing for soil samples). No text change required.
Michael Dorsey	14-15	3a. Old data is being used and it is an overall average of a large area of different environments. There is no reference to verify what areas were even used as various locations around the State of CA the Western U.S. I searched more recent data from the Berkeley Lawrence National Laboratory, NIOSH, OSHHA, OSHA, and the US Environmental Protection Agency for specific levels of health risk of different components of elements in the samples of the 14 locations in the MRC area. ARSENIC The EPA has stated that levels of arsenic in soil from 5 ppm up to 20 ppm are generally viewed as safe, even if contact with arsenic at these levels continues for many years. The report states that arsenic exceeded ecological soil of 25 mg/kg at MRC sample site 7 at 28mg/kg. LEAD The National Institute of Occupational Safety and Health (NIOSH) at CDC has set a Recommended Exposure Limit (REL) of 50 mg/m3 for a Time Weighted Average (TWA) of 8 hours to be maintained so that worker blood lead remains <60 µg/dL of whole blood. The report states 32/mg/kg level of safety, yet 2 locations MRC-1 at 82/mg/kg and MRC-2 at 130 mg/kg greatly exceed the healthy safe target. 4 community sample wipes vary considerably in different types of metals.	General Comment	Background	Older literature background studies were incorporated to help round out some analytes that were not evaluated in more recent studies (e.g., aluminum). These older studies may actually reflect less anthropogenic contributions than more recent studies. The 2009 LBNL study does specifically identify where their 1,400 samples were collected; however, in the case of arsenic, the 2009 LBNL study differentiates samples collected in the Great Value Formation and other geologic units. As shown in Response Figure 1, elevated arsenic concentrations detected at MRC-2, MRC-4, and MRC-8 compared to all other MRC samples can be attributed to the Great Value Formation (see Response Figure 2), where arsenic "concentrations measured in the Great Valley Formation are about double those of other units" (LBNL, 2009). The maximum detected arsenic soil concentration among MRC samples (28 mg/kg) occurred at MRC-2, which is equivalent to the 99th percentile of all arsenic soil samples and 95th percentile of Great Valley Formation soil samples in the LBNL soil background dataset (LBNL, 2009; Table 4). The maximum detected lead soil concentration among MRC samples (82 mg/kg) is just slightly above the SFRWQCB Environmental Screening Level (ESL) protective of residential exposure (80 mg/kg), which is the California-specific health standard. The MRC-2 soil lead concentration is 79 mg/kg, not 130 mg/kg. There is no lead soil concentration of 130 mg/kg. It is important to understand this natural occurrence and what range of concentrations occur naturally, which is called the expected background range, when assessing risks. Based on the screening level assessment of the soil data, which includes a comparison to an expected background range when assessing risks. Based on the screening level assessment of the soil data, which includes a comparison to an expected background range. *None of the metals (arsenic and lead) exceed the regional background range, *Nowever these exceedances are not likely associated with the spent catalyst material,
		3b. The report states that the soil samples were taken anywhere from 0-6". I would like to see the same element compared from the same depth at the different locations. It isn't stated and there is no identification at what level the samples were taken. That doesn't seem scientific to me. I object to comparisons of actual samples taken near MRC being compared against average old data instead of taking actual samples from real areas that can be identified.	General Comment	MR-1 SAP	It is noted that some surficial soils may have been physically transported from an initial deposition location by heavy rains in the '22-'23 wet season. The SAP was developed to provide a representative snapshot of soils in the dispersion area. See response to comment 1e. above for justification of surface soil sampling.
		4a. A determination of the nature and extent of the release. The nature is a broad term, but the proposed extent of the release is the Plume Model produced by the Bay Area Air Quality Management District (BAAQMD), released the following Spring.	Executive Summary	MR-1: AQMD Plume Map; SAP	Comment noted; the extent of dust deposition was indeed based on the BAAQMD's dispersion (plume) modeling.
		4b. The chemical composition of the dust. The McCampbell sampling and analysis was requested by the Contra Costa County Health Department (CCH) and BAAQMD on 11/26/2023 on a RUSH basis. The TRC Report refers to the evidence of the dust as including dust particles from "vehicles, trash cans, and residential garden areas within the community". The rest of the TRC soil sampling uses different sites in central and eastern areas of the county. The 5 locations of the McCampbell are all in the City of Martinez. (See Appendix A, page 13/16, or page 62 of the whole report.) The TRC sampling map is based on the BAAQMD Plume Distribution model and includes central and eastern areas of the county. It lists 2 City of Martinez sampling sites (Susana Park and Highland Avenue Park), and a close-by site (Camino Del Sol. (See Figure 1, page 34 of the whole report.) See also Attachment E and page 127 of the whole report.) By May, when TRC sampling was done, that no dust was found that seemed like catalyst is not surprising. [County to respond re timing of investigation]	Executive Summary; Figure 1; Appendix A; Attachment E of Appendix C	MR-1: AQMD Plume Map; SAP Timing of Investigation	As stated in MR-1, soil sampling locations were determined based on the BAAQMD dispersion modeling and associated plume map as well as input from the community (e.g., reports of observed dust deposition). County Input re Timing of Investigation CCH acknowledges that the timeline from the incident to obtaining soil sampling results was quite long. MRC's initial failure to notify the county delayed the determination of this incident as a Major Chemical Accident or Release (MCAR) by about 3 weeks. This designation was crucial to the development of an Oversight Committee. The process of forming the oversight committee, selecting a contractor, and initiating the work contributed to the delay. The process itself is set very intentionally to have a very strong focus on environmental justice by having a transparent and public process. CCH is working to be more nimble when incidents of this severity occur. CCH has heard the concerns from the community and will be instituting changes to our procedure for the future.
Kathy Petricca	19-20	4c. The extent of dust in the soils within the release area is based on the larger area of the Plume Model and doesn't refer to the catalyst analysis of McCampbell analysis. TRC's commentary is on what would be expected and what would not be expected, and which level is not likely to be associated with catalyst dust. (See Executive Summary, page vi, and page 7 of the whole report.) TRC states "Soil samples did not appear to have typical make-up of spent catalyst dust.' (See page vi.). The samples of the catalyst analyses by McCampbell is not mentioned.	Executive Summary; Section 3.2; Table 1; Appendices, A, B, and F	Bulk and Wipe Samples	A detailed discussion of the bulk and wipe samples analyzed by McCampbell Analytical, Inc. is presented in Section 1.2 Background, in which the bulk and wipe samples are summarized in Table 1 and the lab reports presented as Appendices A and B . Comparison of the bulk and wipe samples to May 2023 soil samples is presented in Section 3.2 Data Composition and Comparison to Spent Catalyst Dust and Bulk Samples, with composition comparison pie charts presented as Appendix F of the Draft SLHHERA. No text change required.
Commenter	PDF		Section of	Response	
---------------------	--------	---	--------------------	---	--
Name	Page #	Comment	Report	Category	TRC Response
		4d. Sample D-6 of the McCampbell work order was collected on 11/28/2022, three days after the release. Eighteen test names are listed. (page 80) Sample D-6 is the background sample. (page 9/16 and page 75.) BAAQMD wrote a request for lab analysis of the samples of November, including a sample taken from COBS main hopper, which also has field comments about a sample of spent catalyst from the main hopper at COBS. (page 14/16, and page 63) BAAQMD also requested an analysis of samples 1-6 with sites D-1 to D-5 being compared to D-6. D-6's location is listed as 3487 Pacheco Blvd, the address of Martinez Refining Company. Contra Costa News of 11/29/2022 printed a statement from the Martinez Refining Company: "The tests confirm the samples are 'spent catalyst' that originated from the refinery's Fluidized Catalytic Cracking Unit and the catalyst had been incinerated at high temperatures to remove impurities for reuse in the refinery process and was accidentally released during overnight hours on Thanksgiving night." The above omissions of the actual and timely sample of the actual catalyst, and the residential samples in Martinez make conclusions based on far-flung sampling of other county soils questionable. Plus, TRC's discussion of even more far-flung soils in Napa County and Union City, Alameda County is a distraction and a comparison of Contra Costa soils to them is also questionable for the purpose at hand.	General Comment	MR-1; Purpose of Dust sample analyses ; Fingerprinting	See MR-1: As noted in the SAP, bulk samples of dust and wipe samples collected by the County were analyzed to determine the nature of the released material and to therefore subsequently compare with soil samples collected based on the dispersion modeling and community reports of dust deposition. Wipe sample, D-6, is indeed a background sample. The only address on the wipe sample laboratory report (presented as Appendix B in the Draft SLHHERA) is the address of the Contra Costa County Hazardous Materials Program, 4585 Pacheco Blvd, Martinez, CA. A comparison between bulk samples and expected background range was not conducted, as that was not the focus of the Draft SLHHERA (wipe and bulk samples helped to identify the chemical composition of the catalyst dust, which was used to determine which chemicals to analyze for during the May 2023 soil investigation). The background literature studies selected were meant to derive a regional background range, which may include samples collected from the San Francisco Bay area, and which presents unique geological formations, as shown in Response Figure 2 . Based on the screening level assessment of the soil data, which includes a comparison to an expected background range, TRC concluded the following: None of the metals analyzed exceed the expected regional background range, showever these exceedances are not likely associated with the spent catalyst dust; arearia, as the proportions of the metals found did not match that of the spent catalyst composition in the bulk material or dust (wipe samples).
		5a. Inadequate Sampling Locations: The TRC study indicated only two out of the 14 sample locations were from areas that experienced visible deposition from the MRC event. This is concerning, especially when TRC's Gale Hoffnagle acknowledges the likely heavy deposition nearby the refinery. Sampling Methodology: TRC's Jonathan Scheiner noted that their sampling locations were determined by the BAAQMD's plume model. However, if the goal was to evaluate the "worst case" scenarios, then basing the study on only two visibly affected locations (nearby and downwind of) the refinery seems counterintuitive out of a total of 14 locations (with the majority of sample locations from between 5 and 15 miles to the west). Depth of Soil Samples: The depth at which the samples were taken is questionable, especially considering the samples were taken almost three quarters of a year post-event and after multiple atmospheric river winter storms. A mere 6-inch depth at only two affected sites makes the scientific relevance of such samples highly suspect.	General Comment	MR-1 SAP	As stated in MR-1, soil sampling locations were determined based on the BAAQMD dispersion modeling and associated plume map as well as input from the community (e.g., reports of observed dust deposition). As referenced in Table 5 of the Draft SLHHERA Report, the screening level risk assessment presented health risks associated with potential exposure to affected soils on a "per sample location" basis, summing the risks from each exposure pathway at that location. Each quantified risk presented in this summary table is based on a comparison with published screening levels, and therefore presents a "worst-case" risk (i.e., due to the conservative exposure and toxicity assumptions inherent in the derivation of the published screening levels.
		Sb. Air District's Role: My discussions with the Air District revealed that they neither provided specific advice to TRC nor CC Health on utilizing the provided map for sampling. It appears the map was more of a starting point rather than an exact guide, raising further questions about the selected sample locations. Clarification on Air District's Role: Per my communications with BAAQMD: "The Air District did not provide specific advice to TRC or CC Health on how to use the map" And The Air District, in both remote meetings and written documents, clarified that this map provided modeled deposition values as a starting point for purposes of informing the soil sampling program; this modeling map was not developed to identify where residents are impacted by catalyst materials."	General Comment	MR-1 SAP	As noted in MR-1, and as confirmation, the BAAQMD did not provide any instructions or guidance on "how to use the map". TRC's certified meteorologist conducted a technical peer review of the Air District's modeling, and per findings that the modeling was properly conducted, the plume map was used to inform the determination of soil sample locations. Dust deposition is most likely to be located in locations within the plume provided by the BAAQMD.
Charles Davidson	21-22	Sc. Recommended Sampling Approach: For a more robust and credible study, TRC should have begun their sampling from the center of the visible deposition area near the MRC refinery and then expanded outward.	General Comment	MR-1 SAP	A basic premise of the SAP is that meteorological conditions (e.g., wind patterns) would most accurately govern the deposition of released dust. There is no scientific reason to believe that the dust would be distributed in a pattern independent of meteorological conditions at the time of the release (e.g., a circular distribution pattern).
				1	County Response re delay in timing of investigation
		Sd. Role of the County: The county's delay in conducting a comprehensive sampling post the incident, especially ahead of the winter storms, raises concerns. Immediate sampling would have been more informative and credible, even if a consultant like TRC was to be engaged later.	General Comment	Timing of Investigation	CCH acknowledges that the timeline from the incident to obtaining soil sampling results was quite long. MRC's initial failure to notify the county delayed the determination of this incident as a Major Chemical Accident or Release (MCAR) by about 3 weeks. This designation was crucial to the development of an Oversight Committee. The process of forming the oversight committee, selecting a contractor, and initiating the work contributed to the delay. The process itself is set very intentionally to have a very strong focus on environmental justice by having a transparent and public process. CCH is working to be more nimble when incidents of this severity occur. CCH has heard the concerns from the community and will be instituting changes to our procedure for the future.
		Se. Historical Context: The very notion that there was no rise in soil heavy metals around a century-old heavy crude refinery seems improbable. Historical data suggests such refineries have been sources of airborne contamination.	General Comment	MR-1 SAP	As noted in MR-1 and detailed in the SAP, the objective of the Draft SLHHERA was to determine - on a worst-case preliminary basis - the health and ecological risks posed by this release of catalyst dust; it is noted that the subject area is not a natural, "pristine" area.
		Sf. Concerns about Ongoing Emissions: Beyond this event, there is a broader concern about the continued emission of PM2.5 particulate matter, which has known severe health implications due to its ability to deeply penetrate lungs and carry toxic heavy metals.	General Comment	Ongoing Emissions	County Response CCH does not have jurisdiction over ongoing emissions, however CCH continues to work closely with BAAQMD on this matter.
		Sg. Recommendation: It's imperative that comprehensive heavy metal sampling be conducted not just in the soil but also inside nearby residential areas, particularly inside homes. In light of the above concerns, I strongly urge a re-evaluation of the current findings and an in depth, scientifically sound study to ensure the health and safety of our community.	General Comment	MR-1 SAP	The Draft SLHHERA was conducted to evaluate potential risks posed by exposure to catalyst dust from this particular release - on a "worst-case" basis - and incorporated residential areas. Uncovered soils in the plume area represent the worst case for identifying dust samples in the local environment; re-deposition of dust into homes would represent a lesser exposure than "outdoor" samples and certainly not a "worst-case" exposure.

Commenter	PDF		Section of	Response	
Name	Page #	Comment	Report	Category	TRC Response
Katie Keenan	23-25	 6.0 Both my husband and I coughed for 2 weeks following the incident. Regardless of the findings I disagree. I have 6 fruit trees which yearly produced fruit except after 11/2022! The leaves were wilted and white. It is 9/13/23 and not one piece of fruit! I've since dug up Topsoil surrounding the trees and placed new compost. Yet this damage after the spent catalyst which from rains penetrated the soil. Do not tell me they were "safe levels" You write ONLY arsenic and lead exceeded screening levels! BOTH ARE TOXIC to humans and animals! What is the District Attorney doing? 	General Comment	General MR-1 SAP	Unfortunately, the atmospheric conditions immediately after the release were not captured and could not be evaluated as part of this Draft SLHHERA. Although anthropogenic sources of metals can not be clearly distinguished from naturally-occurring background levels, elevated arsenic concentrations at MRC-2, MRC-4, and MRC-8 compared to all other samples (see Response Figure 1) can be attributed to a geologic classification called the Great Valley Formation (see Response Figure 2), where arsenic "concentrations measured in the Great Valley Formation are about double those of other units" (LBNL, 2009). As stated in Draft SLHHERA Section 4.2.1 (Arsenic Update by Plants), "The Agency for Toxic Substances and Disease Registry (ATSDR) published a pamphlet in 2015 called <i>Safe Gardening, Safe Play, and a Safe Home</i> , which looks at exposure and risk when arsenic in soil is greater than 20 mg/kg, similar to May 2023 soil samples, MRC-2 and MRC-4. The ATSDR study concluded that "even for those areas showing elevated levels of arsenic, the uptake into home grown vegetables or fruits, is not likely to be sufficient to cause any health effects to persons gardening in the soil or eating vegetables grown in the garden." It should be noted that the source bulk sample (B-6) reported only 5.8 mg/kg of arsenic and 12 mg/kg of lead. The lead concentration at B-6 is below the SFRWQCB Environmental Screening Level (ESL) protective of residential exposure (80 mg/kg), which is the California-specific health standard. The Draft SLHHERA was conducted to evaluate - on a "worst-case" basis, and incorporated residential areas. Uncovered soils in the plume area represent the worst case for identifying dust samples in the local environment.
Kathleen Claney	27	7.0 Jenny Phillips comment specific focus was on soil samples collected from the surface to 6" down only because this type catalyst does not leach into water and is not diluted by heavy rain. When it rains often the top layer is carried away by the rain/water into sewer drains. Is not water affected.	General Comment	Sample Deposition	It is noted that some surficial soils may have been physically transported from an initial deposition location by heavy rains in the '22-'23 wet season. The SAP was developed to provide a representative snapshot of soils in the dispersion area.
Maureen Brennan	32	8a. These TRC studies are skewing background numbers. They have cherry-picked other sources to ratchet up current background levels. This TRC study introduces numbers that are outliers, and should not be considered as background. Zinc The mean for Berkeley Lawrence Labs (BLL) is 64. Yet, TRC looked at 8 sites in other countries, and most were below 100, as was Berkeley Labs. The outlier in Union city (474mg/kg) which became the high normal for background levels is geographically too far away for comparison. That number is an outlier and should be ignored. Chromium At BLL, the background of Chromium is 100 mg/kg. Our new high normal is 1690 mg/kg. The Napa fire 2017 data is another outlier because of the extensive incineration that occurred. It skews numbers considered background, and real contamination hides behind those numbers. DTSC calls this an Error II mistake, or a false negative. We cannot set background levels so very high for our communities. DTSC alls or ecommends studies for legacy pollution to include a "coring" of soil, as they do in the ocean. Recommend hat this is performed As a reminder, this is a risk assessment document. I've only seen numbers from soil sampling. However, a true risk assessment would include the repercussions of contamination of heavy metals for health conditions. Including background contamination. Demographics of who is affected, old and young typically. Cancer? or non-cancer repercussions. Heavy metals tested, and what are symptoms? We are still at risk, especially since these numbers are set at an unusually high level.	General Comment	Background	The background literature studies selected were meant to derive a regional background range. The upperbound background concentration for zinc was collected within the San Francisco Bay region as part of a City of Oakland Survey of Studies of Naturally-occurring Metals Concentrations conducted in 2016. If the City of Oakland and its source study acknowledges the upperbound zinc background value, there is no reason to remove it from the background dataset. Similarly, if the 2017 Napa County background study acknowledges the upperbound chromium background value, there is no reason to remove it from the background dataset. The purpose of this report is to focus on health and environmental impacts related to airborne deposition of spent catalyst using a screening level risk assessment process which is adopted and utilized by both USEPA and DTSC. The focus of this report was on soil conditions due only to the airborne deposition of spent catalyst, not on baseline soil concentrations prior to the release, which may be due to anthropogenic or naturally-occurring background conditions. Based on the screening level assessment of the soil data, which includes a comparison to an expected background range, *N one of the metals (arsenic and lead) exceed regional background range, *N one of the metals (arsenic and lead) exceed residential direct contact screening levels, however these exceedances are not likely associated with the spent catalyst material, as the proportions of the metals found did not match that of the spent catalyst composition in the bulk material or dust (wipe samples). Based on these findings, TRC does not recommend additional sampling or further evaluation. No text change required.
		8b. The May 2023 analysis is too late for a November 2022 event (after 6 atmospheric rivers). Of 14 samplings, only 3 were close to the site of release, This is not good science. [County to respond re timing of investigation]	General Comment	Timing of Investigation	County Input re Timing of Investigation CCH acknowledges that the timeline from the incident to obtaining soil sampling results was quite long. MRC's initial failure to notify the county delayed the determination of this incident as a Major Chemical Accident or Release (MCAR) by about 3 weeks. This designation was crucial to the development of an Oversight Committee. The process of forming the oversight committee, selecting a contractor, and initiating the work contributed to the delay. The process itself is set very intentionally to have a very strong focus on environmental justice by having a transparent and public process. CCH is working to be more nimble when incidents of this severity occur. CCH has heard the concerns from the community and will be instituting changes to our procedure for the future.
Notes: ATSDR = Agen	cy for Toxic	Substances and Disease Registry	MR-1 = Maste	er Response 1 to I	- Public Comments Regarding Soil Sampling Logistics

BAAQMD = Bay Area Air Quality Management District DTSC = California Department of Toxic Substances Control ESL = Environmental Screening Level HERO = Human and Ecological Risk Office HHRA = Human Health Risk Assessment MR-1 = Master Response 1 to Public Comments Regarding Soil Sampling Logistics MRC = Martinez Refining Company SAP = Sampling and Analysis Plan SLHHERA = Screening Level Human Health and Ecological Risk Assessment SFRWQCB = San Francisco Bay Regional Water Quality Control Board USEPA = United States Environmental Protection Agency

Reference:

Lawrence Berkeley National Laboratory Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory, D. Diamond, D. Baskin, D. Brown, L. Lund, J. Najita, and I Javandel, June 2002 Revised April 2009

Appendix K. Responses to Public Comments

Commenter Name	PDF Page #	Comment	Section of Report	Response Category	TRC Response
		1a. The scientific explanation for why the 14 sites were picked was not clearly articulated. Sure, the sample sites were informed by the BAAQMD model. However, that model, as presented at the city meeting, was based on assumptions that have significant effects on the model's output. Mainly, plume and weather maps rely on a large data set to make informed conclusions - they had a limited dataset (2 days of weather) to inform the model which means the model's predictions could be vastly different from reality. My suggestion is that 14 spots all detecting no notable increases, is not a sufficient sample size to properly conclude there is no health risk. 14 samples lack the statistical power to properly report a lack of risk. Finding zero everywhere is not a good answer. We would want to find data that supports that the model is correct in predicting plume and fallout. Then we can assess for risk. "No visible dust was observed at any of the sample locations." No surprise here. Samples were taken May 4-5 when the release was in November 2022 after the heaviest rainfall in CA in a decade. Maybe soil samples aren't going to be sufficient to assess the risk. [County to respond re timing of investigation]	2.0 Soil Investigation	MR-1; Timing of Investigation	See MR-1 Soll sampling locations were determined based on the BAAQMD dispersion modeling and associated plume map as well as input from the community (e.g., reports of observed dust deposition). The modeling inputs, assumptions and model results developed by the BAAQMD were critically reviewed by TRC's Certified Consulting Meteorologist, Gale Hoffnagle, who has previously provided expert witness input for three other catalyst dust releases by refineries within the United States. As articulated in MR-1, the locations selected for collection of soil samples should provide a representative data set to serve as inputs for the subject "worst-case" screening level risk assessment. The identified release zone, as determined by both physical observations provided by the affected community and the BAAQMD's dispersion modeling, constitutes the most technically sound area for selection of soil sample locations for this screening level assessment. County Input re Timing of Investigation CCH acknowledges that the timeline from the incident to obtaining soil sampling results was quite long. MRC's initial failure to notify the county delayed the determination of this incident as a Major Chemical Accident or Release (MCAR) by about 3 weeks. This designation was crucial to the development of an Oversight Committee. The process of forming the oversight committee, selecting a contractor, and initiating the work contributed to the delay. The process itself is set very intentionally to have a very strong focus on environmental justice by having a transparent and public rocess. CCH is working to be more nimble when incidents of this severity occur. CCH has heard the concerns from the community and will be instituting changes to our procedure for the future.
		1b. "the soil samples do not appear to have the same composition as the spent catalyst dust or bulk samples." I would not expect the soil samples to have the same composition. The soil samples should have other things plus elevated levels of the release dust. Different ratios of the chemicals of interest would be expected. We do not have a sample of the soil prior to the release so there is not a good understanding of baseline.	3.0 Data Evaluation	Sample Composition	The report acknowledges that "while it is possible that some catalyst dust is mixed in with soil in the community, the soil samples do not appear to have the same composition as the spent catalyst dust or bulk samples." The catalyst dust is comprised predominantly of aluminum and vanadium; however, vanadium was not found in significant quantities in any of the May 2023 soil samples. If catalyst dust was present in these soil samples, vanadium would be detected at higher concentrations. No text change required.
		1c. "However, aerated garden soils in neighborhoods surrounding MRC would generally contain the less soluble, less mobile, and less phytoavailable pentavalent arsenic. – There needs to be a citation for this – how are you sure this is true? Provide a reference for this statement.	4.2.1 Arsenic Uptake by Plants	Arsenic Uptake	Reduced states of arsenic (more mobile, soluble, and phytoavailable in soil) require garden soil to be under water (e.g., flooded rice paddy), which is unlikely in the neighborhoods surrounding MRC. No text change required.
Tameji Eames	3-4	1d. "None of the metals analyzed exceed the expected regional background range," – What is the background range for an area not proximate to a refinery? Say Danville Saying that the soil samples do not exceed background levels is not the same as saying there is a healthy concentration of trace elements (listed on page 5) in the soil where sampled.	5.0 Conclusions	Background	Although anthropogenic sources of metals can not be clearly distinguished from naturally-occurring background levels, elevated arsenic concentrations at MRC-2, MRC-4, and MRC-8 compared to all other samples (see Response Figure 1) can be attributed to a geologic classification called the Great Valley Formation (see Response Figure 2), where arsenic "concentrations measured in the Great Valley Formation are about double those of other units" (LBNL, 2009). The term "healthy concentration of trace elements" is never used in the Draft SLHHERA. The purpose of this report is to focus on health and environmental impacts related to airborne deposition of spent catalyst using a screening level risk assessment process which is adopted and utilized by both USEPA and DTSC. Based on the screening level assessment of the soil data, which includes a comparison to an expected background range, TRC concluded the following: None of the metals analyzed exceed residential direct contact screening levels, however these exceedances are not likely associated with the spent catalyst material, as the proportions of the metals found did not match that of the spent catalyst composition in the bulk material or dust (wipe samples). Based on these findings, TRC does not recommend additional sampling or further evaluation. No text change required.
		1e. "Two metals (arsenic and lead) exceed residential direct contact screening levels, however these exceedances are not likely associated with the spent catalyst material, as the proportions of the metals found did not match the spent catalyst composition in the bulk material or dust (wipe samples)." – This statement does not make sense. The lead in the ground could have come from the catalyst. Why would you expect the proportions of metals in the soil to match the proportions of the catalyst exactly? MRC has released chemicals for years so the soil is already contaminated. There would not be equal ratios if there were already high lead concentration contaminated soil. We do not have a baseline lead measurement for this soil prior to the catalyst release so how can you say this is a non-issue when the levels exceed the residential direct screening levels? And the term "not likely." This should come with a confidence interval. How "non-likely?" This is not a quantifiable measure and the whole point of testing is to quantify! I am disappointed with the superficial effort put forth with this sampling paradigm and report. I would like to see a significantly larger breadth and depth of testing to 1) support the BAAQMD plume model (nothing in the risk assessment report confirms or denies the model was well-informed), and 2) to ensure that the food I eat out of my garden is safe because this report does neither.	5.0 Conclusions	Background	The purpose of this report is to focus on health and environmental impacts related to airborne deposition of spent catalyst using a screening level risk assessment process which is adopted and utilized by both USEPA and DTSC. The focus of this report was on soil conditions due only to the airborne deposition of spent catalyst that occurred in November 2022, not on baseline soil concentrations prior to the release, which may be due to anthropogenic (including prior MRC operations) or naturally-occurring background conditions. The bulk sample collected from MRC appears to mostly contain vanadium, followed by nickel, and then barium. The lead concentration of the bulk sample collected from MRC (12 mg/kg) is below its residential soil health standard (80 mg/kg) and much lower than many of the soil samples collected in May 2023, as shown in Table 4 of the Draft SLHHERA. The statement will be modified as follows "Two metals (arsenic and lead) exceed residential direct contact screening levels, however these exceedances do not represent the spent catalyst material, as the proportions of the metals found did not match the spent catalyst composition in the bulk material or dust (wipe samples)." The depth of sampling was determined based on California DTSC, HERO Human Health Risk Assessment (HHRA) Note Number 4: <i>Guidance for Screening Level Human Health Risk Assessments</i> issued March 29, 2022, in which "discrete soil samples should be collected from blue strafece (0 to 6 inches bgs)

Commenter Name	PDF Page #	Comment	Section of Report	Response Category	TRC Response
Thomas Kellogg	12	2.0 How did you conclude that the release did not exceed regional background levels when they are expressed in concentrations, e.g., ug/L, and your analyses are expressed in ug/wipe.	General Comment	Background	Although wipe samples use different units (µg/wipe), they indicated a presence of several metals (as shown in Table 1 of the Draft SLHHERA), which were compared to their proportion in both the source bulk sample (B-6) and bulk samples collected from the community. The bulk sample collected from MRC appears to mostly contain vanadium, followed by nickel, and then barium. Other metals analyzed, but not found in large quantities were copper, zinc, total chronium, lead, molyddenum, arsenic, selenium, and beryllium. A comparison between bulk samples and expected background range was not conducted, as that was not the focus of the Draft SLHHERA (wipe and bulk samples helped to identify the chemical composition of the catalyst dust, and thereby informed the analytical scope of testing for soil samples). No text change required.
Michael Dorsey	14-15	 3a. Old data is being used and it is an overall average of a large area of different environments. There is no reference to verify what areas were even used as various locations around the State of CA the Western U.S. I searched more recent data from the Berkeley Lawrence National Laboratory, NIOSH, OSHHA, OSHA, and the US Environmental Protection Agency for specific levels of health risk of different components of elements in the samples of the 14 locations in the MRC area. ARSENIC The EPA has stated that levels of arsenic in soil from 5 ppm up to 20 ppm are generally viewed as safe, even if contact with arsenic at these levels continues for many years. The report states that arsenic exceeded ecological soil of 25 mg/kg at MRC sample site 7 at 28mg/kg. EAD The National Institute of Occupational Safety and Health (NIOSH) at CDC has set a Recommended Exposure Limit (REL) of 50 µg/m3 for a Time Weighted Average (TWA) of 8 hours to be maintained so that worker blood lead remains <60 µg/kg greatiy exceed the healthy safe target. 4 community sample wipes vary considerably in different types of metals. 	General Comment	Background	Older literature background studies were incorporated to help round out some analytes that were not evaluated in more recent studies (e.g., aluminum). These older studies may actually reflect less anthropogenic contributions than more recent studies. The 2009 LBNL study does specifically identify where their 1,400 samples were collected; however, in the case of arsenic, the 2009 LBNL study differentiates samples collected in the Great Value Formation and other geologic units. As shown in Response Figure 1 , elevated arsenic concentrations detected at MRC-2, ARC-4, and MRC-8 compared to all other MRC samples can be attributed to the Great Valley Formation (see Response Figure 2), where arsenic "concentration among MRC samples (28 mg/kg) occurred at MRC-2, which is equivalent to the 99th percentile of all arsenic soil samples and 95th percentile of Great Valley Formation soil samples in the LBNL soil background dataset (LBNL, 2009; Table 4). The maximum detected lead soil concentration among MRC samples (28 mg/kg) is just slightly above the SFRWQCB Environmental Screening Level (ESL) protective of residential exposure (80 mg/kg), which is the California-specific health standard. The MRC-2 soil lead concentration is 79 mg/kg, not 130 mg/kg. There is no lead soil concentrations greater than what would be acceptable for ecological and human health soil standards. Therefore, when evaluating the nature and extent of the November 2022 release and assessing risks related to this release, USEPA and DTSC guidance allows for the removal of the expected background range, TRC concluded the following: *No on the expected background range, TRC concluded the following: *No on the metals analyzed exceed the expected regional background range, *Iwo were these exceedances are not likely associated with the spent catalyst composition in the bulk material or dust (wipe samples). Although some variability in community wipe samples is expected, the four community samples tend to be show composition trends (e.g., elevated vanadi
		3b. The report states that the soil samples were taken anywhere from 0-6". I would like to see the same element compared from the same depth at the different locations. It isn't stated and there is no identification at what level the samples were taken. That doesn't seem scientific to me. I object to comparisons of actual samples taken near MRC being compared against average old data instead of taking actual samples from real areas that can be identified.	General Comment	MR-1 SAP	It is noted that some surficial soils may have been physically transported from an initial deposition location by heavy rains in the '22-'23 wet season. The SAP was developed to provide a representative snapshot of soils in the dispersion area. See response to comment 1e. above for justification of surface soil sampling.
		4a. A determination of the nature and extent of the release. The nature is a broad term, but the proposed extent of the release is the Plume Model produced by the Bay Area Air Quality Management District (BAAQMD), released the following Spring.	Executive Summary	MR-1: AQMD Plume Map; SAP	Comment noted; the extent of dust deposition was indeed based on the BAAQMD's dispersion (plume) modeling.
		4b. The chemical composition of the dust. The McCampbell sampling and analysis was requested by the Contra Costa County Health Department (CCH) and BAAQMD on 11/26/2023 on a RUSH basis. The TRC Report refers to the evidence of the dust as including dust particles from "vehicles, trash cans, and residential garden areas within the community". The rest of the TRC soil sampling uses different sites in central and eastern areas of the county. The 5 locations of the McCampbell are all in the City of Martinez. (See Appendix A, page 13/16, or page 62 of the whole report.) The TRC sampling map is based on the BAAQMD Plume Distribution model and includes central and eastern areas of the county. It lists 2 City of Martinez sampling sites (Susana Park and Highland Avenue Park), and a close-by site (Camino Del Sol. (See Figure 1, page 34 of the whole report.) See also Attachment E and page 127 of the whole report.) By May, when TRC sampling was done, that no dust was found that seemed like catalyst is not surprising. [County to respond re timing of investigation]	Executive Summary; Figure 1; Appendix A; Attachment E of Appendix C	MR-1: AQMD Plume Map; SAP Timing of Investigation	As stated in MR-1, soil sampling locations were determined based on the BAAQMD dispersion modeling and associated plume map as well as input from the community (e.g., reports of observed dust deposition). County Input re Timing of Investigation CCH acknowledges that the timeline from the incident to obtaining soil sampling results was quite long. MRC's initial failure to notify the county delayed the determination of this incident as a Major Chemical Accident or Release (MCAR) by about 3 weeks. This designation was crucial to the development of an Oversight Committee. The process of forming the oversight committee, selecting a contractor, and initiating the work contributed to the delay. The process itself is set very intentionally to have a very strong focus on environmental justice by having a transparent and public process. CCH is working to be more nimble when incidents of this severity occur. CCH has heard the concerns from the community and will be instituting changes to our procedure for the future.
Kathy Petricca	19-20	4c. The extent of dust in the soils within the release area is based on the larger area of the Plume Model and doesn't refer to the catalyst analysis of McCampbell analysis. TRC's commentary is on what would be expected and what would not be expected, and which level is not likely to be associated with catalyst dust. (See Executive Summary, page vi, and page 7 of the whole report.) TRC states "Soil samples did not appear to have typical make-up of spent catalyst dust.' (See page vi.). The samples of the catalyst analyses by McCampbell is not mentioned.	Executive Summary; Section 3.2; Table 1; Appendices, A, B, and F	Bulk and Wipe Samples	A detailed discussion of the bulk and wipe samples analyzed by McCampbell Analytical, Inc. is presented in Section 1.2 Background, in which the bulk and wipe samples are summarized in Table 1 and the lab reports presented as Appendices A and B . Comparison of the bulk and wipe samples to May 2023 soil samples is presented in Section 3.2 Data Composition and Comparison to Spent Catalyst Dust and Bulk Samples, with composition comparison pie charts presented as Appendix F of the Draft SLHHERA. No text change required.

Commenter	PDF		Section of	Response	
Name	Page #	Comment	Report	Category	TRC Response
		4d. Sample D-6 of the McCampbell work order was collected on 11/28/2022, three days after the release. Eighteen test names are listed. (page 80) Sample D-6 is the background sample. (page 9/16 and page 75.) BAAQMD wrote a request for lab analysis of the samples of November, including a sample taken from COBS main hopper, which also has field comments about a sample of spent catalyst from the main hopper at COBS. (page 14/16, and page 63) BAAQMD also requested an analysis of samples 1-6 with sites D-1 to D-5 being compared to D-6. D-6's location is listed as 3487 Pacheco Blvd, the address of Martinez Refining Company. Contra Costa News of 11/29/2022 printed a statement from the Martinez Refining Company: "The tests confirm the samples are 'spent catalyst' that originated from the refinery's Fluidized Catalytic Cracking Unit and the catalyst had been incinerated at high temperatures to remove impurities for reuse in the refinery process and was accidentally released during overnight hours on Thanksgiving night." The above omissions of the actual and timely sample of the actual catalyst, and the residential samples in Martinez make conclusions based on far-flung sampling of other county soils questionable. Plus, TRC's discussion of even more far-flung soils in Napa County and Union City, Alameda County is a distraction and a comparison of Contra Costa soils to them is also questionable for the purpose at hand.	General Comment	MR-1; Purpose of Dust sample analyses ; Fingerprinting	See MR-1: As noted in the SAP, bulk samples of dust and wipe samples collected by the County were analyzed to determine the nature of the released material and to therefore subsequently compare with soil samples collected based on the dispersion modeling and community reports of dust deposition. Wipe sample, D-6, is indeed a background sample. The only address on the wipe sample laboratory report (presented as Appendix B in the Draft SLHHERA) is the address of the Contra Costa County Hazardous Materials Program, 4585 Pacheco Blvd, Martinez, CA. A comparison between bulk samples and expected background range was not conducted, as that was not the focus of the Draft SLHHERA (wipe and bulk samples helped to identify the chemical composition of the catalyst dust, which was used to determine which chemicals to analyze for during the May 2023 soil investigation). The background literature studies selected were meant to derive a regional background range, which may include samples collected from the San Francisco Bay area, and which presents unique geological formations, as shown in Response Figure 2 . Based on the screening level assessment of the soil data, which includes a comparison to an expected background range, TRC concluded the following: None of the metals analyzed exceed the expected regional background range, Two metals (arsenic and lead) exceed residential direct contact screening levels, however these exceedances are not likely associated with the spent catalyst material, as the proportions of the metals found did not match that of the spent catalyst composition in the bulk material or dust (wipe samples).
		5a. Inadequate Sampling Locations: The TRC study indicated only two out of the 14 sample locations were from areas that experienced visible deposition from the MRC event. This is concerning, especially when TRC's Gale Hoffnagle acknowledges the likely heavy deposition nearby the refinery. Sampling Methodology: TRC's Jonathan Scheiner noted that their sampling locations were determined by the BAAQMD's plume model. However, if the goal was to evaluate the "worst case" scenarios, then basing the study on only two visibly affected locations (nearby and downwind of) the refinery seems counterintuitive out of a total of 14 locations (with the majority of sample locations from between 5 and 15 miles to the west). Depth of Soil Samples: The depth at which the samples were taken is questionable, especially considering the samples were taken almost three quarters of a year post-event and after multiple atmospheric river winter storms. A mere 6-inch depth at only two affected sites makes the scientific relevance of such samples highly suspect.	General Comment	MR-1 SAP	As stated in MR-1, soil sampling locations were determined based on the BAAQMD dispersion modeling and associated plume map as well as input from the community (e.g., reports of observed dust deposition). As referenced in Table 5 of the Draft SLHHERA Report, the screening level risk assessment presented health risks associated with potential exposure to affected soils on a "per sample location" basis, summing the risks from each exposure pathway at that location. Each quantified risk presented in this summary table is based on a comparison with published screening levels, and therefore presents a "worst-case" risk (i.e., due to the conservative exposure and toxicity assumptions inherent in the derivation of the published screening levels.
		Sb. Air District's Role: My discussions with the Air District revealed that they neither provided specific advice to TRC nor CC Health on utilizing the provided map for sampling. It appears the map was more of a starting point rather than an exact guide, raising further questions about the selected sample locations. Clarification on Air District's Role: Per my communications with BAAQMD: "The Air District did not provide specific advice to TRC or CC Health on how to use the map" And The Air District, in both remote meetings and written documents, clarified that this map provided modeled deposition values as a starting point for purposes of informing the soil sampling program; this modeling map was not developed to identify where residents are impacted by catalyst materials."	General Comment	MR-1 SAP	As noted in MR-1, and as confirmation, the BAAQMD did not provide any instructions or guidance on "how to use the map". TRC's certified meteorologist conducted a technical peer review of the Air District's modeling, and per findings that the modeling was properly conducted, the plume map was used to inform the determination of soil sample locations. Dust deposition is most likely to be located in locations within the plume provided by the BAAQMD.
Charles Davidson	21-22	Sc. Recommended Sampling Approach: For a more robust and credible study, TRC should have begun their sampling from the center of the visible deposition area near the MRC refinery and then expanded outward.	General Comment	MR-1 SAP	A basic premise of the SAP is that meteorological conditions (e.g., wind patterns) would most accurately govern the deposition of released dust. There is no scientific reason to believe that the dust would be distributed in a pattern independent of meteorological conditions at the time of the release (e.g., a circular distribution pattern).
					County Response re delay in timing of investigation
		Sd. Role of the County: The county's delay in conducting a comprehensive sampling post the incident, especially ahead of the winter storms, raises concerns. Immediate sampling would have been more informative and credible, even if a consultant like TRC was to be engaged later.	General Comment	Timing of Investigation	CCH acknowledges that the timeline from the incident to obtaining soil sampling results was quite long. MRC's initial failure to notify the county delayed the determination of this incident as a Major Chemical Accident or Release (MCAR) by about 3 weeks. This designation was crucial to the development of an Oversight Committee. The process of forming the oversight committee, selecting a contractor, and initiating the work contributed to the delay. The process itself is set very intentionally to have a very strong focus on environmental justice by having a transparent and public process. CCH is working to be more nimble when incidents of this severity occur. CCH has heard the concerns from the community and will be instituting changes to our procedure for the future.
		Se. Historical Context: The very notion that there was no rise in soil heavy metals around a century-old heavy crude refinery seems improbable. Historical data suggests such refineries have been sources of airborne contamination.	General Comment	MR-1 SAP	As noted in MR-1 and detailed in the SAP, the objective of the Draft SLHHERA was to determine - on a worst-case preliminary basis - the health and ecological risks posed by this release of catalyst dust; it is noted that the subject area is not a natural, "pristine" area.
		5f. Concerns about Ongoing Emissions: Beyond this event, there is a broader concern about the continued emission of PM2.5 particulate matter, which has known severe health implications due to its ability to deeply penetrate lungs and carry toxic heavy metals.	General Comment	Ongoing Emissions	County Response CCH does not have jurisdiction over ongoing emissions, however CCH continues to work closely with BAAQMD on this matter.
		5g. Recommendation: It's imperative that comprehensive heavy metal sampling be conducted not just in the soil but also inside nearby residential areas, particularly inside homes. In light of the above concerns, I strongly urge a re-evaluation of the current findings and an in depth, scientifically sound study to ensure the health and safety of our community.	General Comment	MR-1 SAP	The Draft SLHHERA was conducted to evaluate potential risks posed by exposure to catalyst dust from this particular release - on a "worst-case" basis - and incorporated residential areas. Uncovered soils in the plume area represent the worst case for identifying dust samples in the local environment; re-deposition of dust into homes would represent a lesser exposure than "outdoor" samples and certainly not a "worst-case" exposure.

Commenter	PDF		Section of	Response	
Name	Page #	Comment	Report	Category	TRC Response
Katie Keenan	23-25	 6.0 Both my husband and I coughed for 2 weeks following the incident. Regardless of the findings I disagree. I have 6 fruit trees which yearly produced fruit except after 11/2022! The leaves were wilted and white. It is 9/13/23 and not one piece of fruit! I've since dug up Topsoil surrounding the trees and placed new compost. Yet this damage after the spent catalyst which from rains penetrated the soil. Do not tell me they were "safe levels" You write ONLY arsenic and lead exceeded screening levels! BOTH ARE TOXIC to humans and animals! What is the District Attorney doing? 	General Comment	General MR-1 SAP	Unfortunately, the atmospheric conditions immediately after the release were not captured and could not be evaluated as part of this Draft SLHHERA. Although anthropogenic sources of metals can not be clearly distinguished from naturally-occurring background levels, elevated arsenic concentrations at MRC-2, MRC-4, and MRC-8 compared to all other samples (see Response Figure 1) can be attributed to a geologic classification called the Great Valley Formation (see Response Figure 2), where arsenic "concentrations messured in the Great Valley Formation are about double those of other units" (LBNL, 2009). As stated in Draft SLHHERA Section 4.2.1 (Arsenic Update by Plants), "The Agency for Toxic Substances and Disease Registry (ATSDR) published a pamphlet in 2015 called <i>Safe Gardening, Safe Play, and a Safe Hame,</i> which looks at exposure and risk when arsenic in soil is greater than 20 mg/kg, similar to May 2023 soil samples, MRC-2 and MRC-4. The ATSDR study concluded that "even for those areas showing elevated levels of arsenic, the uptake into home grown vegetables or fruits, is not likely to be sufficient to cause any health effects to persons gardening in the soil or eating vegetables grown in the garden." It should be noted that the source bulk sample (B-6) reported only 5.8 mg/kg of arsenic and 12 mg/kg of lead. The lead concentration at B-6 is below the SFRWQCB Environmental Screening Level (ESL) protective of residential exposure (80 mg/kg), which is the California-specific health standard. The Draft SLHHERA was conducted to evaluate - on a "worst-case" basis, and incorporated residential areas. Uncovered soils in the plume area represent the worst case for identifying dust samples in the local environment.
Kathleen Claney	27	7.0 Jenny Phillips comment specific focus was on soil samples collected from the surface to 6" down only because this type catalyst does not leach into water and is not diluted by heavy rain. When it rains often the top layer is carried away by the rain/water into sewer drains. Is not water affected.	General Comment	Sample Deposition	It is noted that some surficial soils may have been physically transported from an initial deposition location by heavy rains in the '22-'23 wet season. The SAP was developed to provide a representative snapshot of soils in the dispersion area.
Maureen Brennan	32	 8a. These TRC studies are skewing background numbers. They have cherry-picked other sources to ratchet up current background levels. This TRC study introduces numbers that are outliers, and should not be considered as background. Zinc The mean for Berkeley Lawrence Labs (BLL) is 64. Yet, TRC looked at 8 sites in other countries, and most were below 100, as was Berkeley Labs. The outlier in Union city (474mg/kg) which became the high normal for background levels is geographically too far away for comparison. That number is an outlier and should be ignored. Chromium At BLL, the background of Chromium is 100 mg/kg. Our new high normal is 1690 mg/kg. The Napa fire 2017 data is another outlier behind those numbers. DTSC calls this an Error II mistake, or a false negative. We cannot set background levels so very high for our communities. DTSC calls or ecommends studies for legacy pollution to include a "coring" of soil, as they do in the ocean. Recommend hat this is performed As a reminder, this is a risk assessment document. I've only seen numbers from soil sampling. However, a true risk assessment would include the repercussions of contamination of heavy metals for health conditions. Including background contamination. Demographics of who is affected, old and young typically. Cancer? or non-cancer repercussions. Heavy metals tested, and what are symptoms? We are still at risk, especially since these numbers are set at an unusually high level. 	General Comment	Background	The background literature studies selected were meant to derive a regional background range. The upperbound background concentration for zinc was collected within the San Francisco Bay region as part of a City of Oakland Survey of Studies of Naturally-occurring Metals Concentrations conducted in 2016. If the City of Oakland and its source study acknowledges the upperbound zinc background value, there is no reason to remove it from the background dataset. Similarly, if the 2017 Napa County background study acknowledges the upperbound chromium background value, there is no reason to remove it from the background dataset. The purpose of this report is to focus on health and environmental impacts related to airborne deposition of spent catalyst using a screening level risk assessment process which is adopted and utilized by both USEPA and DTSC. The focus of this report was on soil conditions due only to the airborne deposition of spent catalyst, not on baseline soil concentrations prior to the release, which may be due to anthropogenic or naturally-occurring background conditions. Based on the screening level assessment of the soil data, which includes a comparison to an expected background range, *N one of the metals (arsenic and lead) exceed regional background range, *N one of the metals (arsenic and lead) exceed residential direct contact screening levels, however these exceedances are not likely associated with the spent catalyst material, as the proportions of the metals found did not match that of the spent catalyst composition in the bulk material or dust (wipe samples). Based on these findings, TRC does not recommend additional sampling or further evaluation. No text change required.
		8b. The May 2023 analysis is too late for a November 2022 event (after 6 atmospheric rivers). Of 14 samplings, only 3 were close to the site of release, This is not good science. [County to respond re timing of investigation]	General Comment	Timing of Investigation	County Input re Timing of Investigation CCH acknowledges that the timeline from the incident to obtaining soil sampling results was quite long. MRC's initial failure to notify the county delayed the determination of this incident as a Major Chemical Accident or Release (MCAR) by about 3 weeks. This designation was crucial to the development of an Oversight Committee. The process of forming the oversight committee, selecting a contractor, and initiating the work contributed to the delay. The process itself is set very intentionally to have a very strong focus on environmental justice by having a transparent and public process. CCH is working to be more nimble when incidents of this severity occur. CCH has heard the concerns from the community and will be instituting changes to our procedure for the future.
Notes: ATSDR = Agen	cy for Toxic	Substances and Disease Registry	MR-1 = Maste	er Response 1 to I	- Public Comments Regarding Soil Sampling Logistics

BAAQMD = Bay Area Air Quality Management District DTSC = California Department of Toxic Substances Control ESL = Environmental Screening Level HERO = Human and Ecological Risk Office HHRA = Human Health Risk Assessment MR-1 = Master Response 1 to Public Comments Regarding Soil Sampling Logistics MRC = Martinez Refining Company SAP = Sampling and Analysis Plan SLHHERA = Screening Level Human Health and Ecological Risk Assessment SFRWQCB = San Francisco Bay Regional Water Quality Control Board USEPA = United States Environmental Protection Agency

Reference:

Lawrence Berkeley National Laboratory Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory, D. Diamond, D. Baskin, D. Brown, L. Lund, J. Najita, and I Javandel, June 2002 Revised April 2009

DRAFT Master Response No. 1 (MR-1) to MRC Public Comments on Draft Screening Level Human Health and Ecological Risk Assessment (SLHHERA)

I - DETERMINATION OF SOIL SAMPLE LOCATIONS

The spatial location of soil samples collected to characterize the nature and extent of spent catalyst dust released was based on the following two key criteria:

- 1. <u>Observed physical evidence</u> of dust present in surrounding areas following the release (e.g., as observed by members of the community and County officials)
- 2. <u>Plume dispersion modeling</u> conducted by the Bay Area Air Quality Management District (BAAQMD or District) per County request to determine, using available data and predictive modeling, where the released dust would be expected to be deposited given prevailing meteorological conditions (e.g., release criteria, prevailing wind speeds and other existing conditions).

These two key criteria are summarized below:

Physical Evidence: In general, the spent catalyst is a granular, gray material comprised predominately of aluminum silicate and trace amounts of heavy metals. Physical evidence of the release was observed and reported by community members as a white powder covering surfaces in local areas, including dust particulates observed on vehicles, trash cans, and residential garden areas within the community. Samples of the dust were collected by County officials from various surfaces in the aftermath of the release; these samples consisted of both bulk dust samples and wipe samples (e.g., collected from windshields and other surfaces). Dust and wipe samples were submitted under standard chain-of-custody protocols to a state-certified environmental laboratory and analyzed for a suite of constituents typically found in spent catalyst. This information was used to inform the analytical plan for collection of soil samples from the affected area surrounding the refinery release point.

Based on preliminary analyses of dust particulates collected by County Health Department staff in the immediate aftermath of the release, detectable levels of the following metals were detected (as listed with laboratory results from bulk and wipe samples in Table 1 of the SLHHERA Report):

- 1. Aluminum
- 2. Arsenic
- 3. Barium
- 4. Beryllium
- 5. Chromium (Total)¹
- 6. Cobalt
- 7. Copper
- 8. Lead
- 9. Molybdenum
- 10. Nickel
- 11. Selenium
- 12. Vanadium
- 13. Zinc

¹ Hexavalent Chromium was added to the laboratory analytical suite of parameters to be tested to further speciate the detected total chromium (e.g., given the increased toxicity of the hexavalent form of chromium that might be included in the total chromium laboratory results).

Dispersion (Plume) Modeling: The dispersion modeling incorporated information regarding the physical and chemical nature of the dust, release parameters (e.g., particle sizes, height of the stacks from which the dust was released, hourly release data per recorded opacity readings from the stacks), <u>actual meteorological data</u> from two local, onsite weather stations and <u>simulated meteorological data</u> per a standard weather forecasting model ("Weather Research and Forecasting [WRF] Model" – Skamarock et al., 2008).

The plume dispersion modeling conducted by the BAAQMD was peer reviewed by TRC's certified consulting meteorologist (Mr. Gale Hoffnagle) who has specific expertise in the analysis of catalyst dust releases from oil refineries in the U.S. Mr. Hoffnagle determined the District's dispersion modeling to be satisfactorily conducted and appropriate for use in developing a soil sampling plan specific to this release and applicable as data inputs to the SLHHERA analysis.

The District's plume modeling generated a plan view map showing two principal areas with simulated deposition and depicted with two corresponding differences in shading. As anticipated, the plume modeling showed deposition extending predominately westward from the release point within the refinery (i.e., consistent with prevailing wind directions recorded by both onsite weather stations and simulated data from the WRF forecasting model).

Coupled with input from the community reporting direct observations of catalyst dust following the release, the plume map generated by the BAAQMD's dispersion modeling represented the most reliable and compelling rationale for selection of soil sampling locations. Given prevailing wind directions, the pattern of wind-driven deposition from the refinery stacks presented a fact-based foundation for determining locations for further investigation. Twelve (12) locations were selected based the plume map and community input; two (2) additional sampling locations were added to capture sensitive receptor areas which were within the downwind and/or cross-wind area of the release source. Actual field locations were in some cases adjusted slightly to address access considerations and property ownership issues.

II – ANALYTICAL PROGRAM

As detailed above, samples of dust collected by the County in the aftermath of the release included both bulk dust samples and wipe samples collected from various surfaces where dust was observed immediately following the release (e.g., windshields of cars). The samples were analyzed and the metallic constituents characteristic of catalyst dust were identified in applicable laboratory reports; these formed the basis of the analytical program for soil samples collected as part of the SLHHERA. A total of 14 soil samples were analyzed by Eurofins Environment Testing, a State-certified chemical laboratory, under an expedited 5-day turnaround time, for the following constituents:

- Title 22 metals + aluminum using USEPA Methods 6010B and 7471A
- Hexavalent chromium using USEPA Method 7199

As noted above, this consisted of 13 metals analyzed plus an additional analysis for the hexavalent form of Chromium. Other tests conducted included percent moisture (ASTM Method D 2216) and pH by EPA Method 9045C.

III – FIELD SOIL SAMPLING PROGRAM

Using hand tool methods, TRC collected soil samples at 14 locations to complement the dust sample data collected by the County for catalyst dust depositions. These samples were collected from areas specified by the County where significant accumulation of catalyst dust was initially observed and where the County was able to provide access for sampling.

Near-surface soil samples (depth of 0-6 inches) were collected at all 14 locations. Preference was given to soil in the shallower portion of the sampling interval (upper 3 inches) to capture dust deposited during the release and given its relative environmental and chemical stability. Where possible, and if any visible dust was observed, actual dust particles were included in the sample. Given the relative physical and chemical stability of the dust and its metallic particulate constituents, the most conservative ("worst-case") working assumption was that the dust would be relatively immobile in the soil locations where deposition occurred. While it is possible that dust particles could have been transported laterally or vertically during significant rain events occurring in the months following the release, the subject screening level investigation focused on surficial soils in the identified deposition zone as a "worst-case" scenario. Depending on the results of the "screening level" risk assessment, additional field sampling and investigation either laterally per drainage patterns or vertically in discrete areas where such conduits were evident represented a potential next step if warranted (e.g., as a contingent next step per health or ecological risks calculated during this analysis). Redeposition of dust material per mechanical transport via rain events would have represented an additional uncertainty in determining a representative sampling grid for this screening level assessment.

Response Figure 1

Response Figure 2

		Contra Costa Health (CCH) Response to Public Comments	
	PDF		
Commenter Name	Page #	Comment	CCH Response
			Thank you for your comments: The soil sampling locations are posted at:
			nttps://www.ccneaitn.org/neaitn-and-safety-information/nazardous-
			materials/martinez-relining-company-2022-nazmat-release-incident under the
			header of soil sampling Locations
		The results of your recent study assuring we citizens of "safe soil" in Martinez is meaningless without telling us exactly (locality) where they sampling was done.	We have also included a table of location numbers and Latitude and Longitude for
Arlene Grimes	Page 1:	This seems like a "cover-up" that benefits MRC. Please publish these locations in print and digitally. Thank you!	vour reference.
	0	Greetings, In response to your request for comment regarding the Martinez Refinery Releases, I would like to recommend more citizen participation regarding	
		the entire refinery safety plan. It is obvious the safety of Martinez citizens is at the bottom of the refinery list of priorities and that will remain until the citizen	
		themselves are allowed to participate in the drafting of any safety measures affecting them.	Thank you for your comments: Regarding the Refinery Safety plans, CCH Hazmat is
			required to host a 45 day public comment period upon receipt and review of a new
		There are a host of other subjects needing to be addressed. One subject close to my needs is beautification. Why can they not install more landscaping to help	safety plan which occurs every 3 years. This public comment period allows for public
		with the unpleasant appearance of the plant? It would result in much better public relations for all. If these subjects alone cannot or will not be discussed or activity of the application of the plant of the during appropriate public relations for all.	participation and comment on the Refinery's Safety Plans. CCH Hazmat is also
		achieved, the relinery in my opinion should be shut down permanently.	Additionally CCH is required to have a presence at a public event during this comment.
		I worked inside all the local refineries over the nast 40 years for a local contractor and each refinery seems to have a differing level of respect for the local	neriod to respond to questions from the public regarding the safety plan or triennial
		community. It is auto boylous to anyone working inside the fence. I would be happy to serve or assist with the endeavor to correct this problem. Thank you for	audit. To be informed of any future public notice periods please send an email to
Mark Sheeley	Page 2:	the opportunity to provide comment.	hazmat.arpteam@cchealth.org
	-		Thank you for your comments. CCH is committed to increasing transparency and
			communication to residents regarding the independent evaluations for MRC. We
			have a dedicated MRC webpage www.cchealth.org/hazmat/mrc which hosts all
			published reports and other information for MRC. Interested Parties may also sign up
Wendy Ke	Page 11:	I just wanted to thank CC Health and Hazmat Staff for the mailer you sent residents of Martinez related to MRC incidents and the Risk Assessment. We appreciat	to receive updates from CCH on this site.
		Were concerned that the County's 2040 General Plan and 6th Cycle Housing Element are planning to place a disproportionate amount of the County's new buying is callusted areas cleant to reference of calluting. While the Caucht and the Air County's Management District the hard to militant	
		nousing in politice areas close to remense and outces or politicion. When the Councy and the Ali Quarky wanagement District by hard to imagate courses of politicion this incident demonstrates that they are not parter at doing so and/or parter and insight application by facility management.	
		sources or pointion, this includent demonstrates that they are not perfect at doing so, and/or not given adequate notification by facility managers, which leave	Thank you for your comments. CCH Hazmat does not have jurisdiction over these
			matters, however CCH Hazmat does work closely with the county's Department of
		It would be preferable to plan a disproportionate amount of the County's new housing stock to go in places that are located far from existing heavy industry	Conservation and Development regarding facilities which handle hazardous materials
Kevin Burke	Page 13:	sites. I encourage the Health Hazardous Materials Program staff to work with DCD on the County's long range planning efforts.	and Land Use Permits.
		l appreciate this opportunity to provide feedback. As a resident of downtown Martinez, with many years experience with refinery issues, I wish to provide my	
		observations and concerns about the Martinez Refining Company (MRC). It is essential that businesses operating in Contra Costa County are respectful and	
		considerate of the health and safety of the residents. And while I can appreciate that the main focus of the investigation is the November 2022 ("Thanksgiving")	
		incident, I am concerned that the MRC may have an operational strategy of disregard of the community and an approach to their operations characterized by a	
		"what can we get away with?" business approach. The key question for your investigation then is, was this incident a single error in judgement, or potentially an	
		lilumination of a policy of plant maintenance and care that cavalienty disregards the nearth and safety of the community? In addition, what was the reason for	
		the excessive amount of time to provide soil testing results? Was this by design or default?	Thank you for your commonte. CCH Harmat is constrately conducting an Indonendont
		I have little confidence in the motivation of MRC because in May, when there were literally reporters circling for quotes about the possible soil contamination.	Incident Investigation and Root Cause Analysis which will address exactly what
		they initiated a loud, multimonth maintenance project with a significant impact on the community, with no notice to neighbors. Very loud noise (65-85 db)	happened during the November 24 incident, identify the management system root
		began the week of 5/22. My neighbors who work construction identified it as the sound of sand blasting. I called the refinery and was told "we aren't doing any	causes, and make recommendations to prevent a future reoccurrence.
		sand blasting" and abruptly the work stopped. When the work resumed the following week, I contacted the State Air Board (on 6/6) and spoke with Anais. She	CCH acknowledges that the timeline from the incident to obtaining soil sampling
		came out to investigate in person. She told me she could clearly hear how loud it was from outside the plant perimeter. She said that she could not locate the	results was quite long. MRC's initial failure to notify the county delayed the
		specific work site and that when she called them to discuss, they stated they were not sandblasting, they were "using slurry", refused to allow her on site to	determination of this incident as a Major Chemical Accident or Release (MCAR) by
		observe, and stated that notice had been sent out. Interestingly, a letter was drafted dated 6/6 informing the neighbors of this project, calling it a maintenance	about 3 weeks. This designation was crucial to the development of an Oversight
		project and that it would conclude in October. I suspect this Air Board inquiry motivated the communications which should have occurred prior to starting the	Committee. The process of forming the oversight committee, selecting a contractor,
		project.	and initiating the work contributed to the delay. The process itself is set very
		After this Air Board visit it was silent for the rest of the week. The following week, the work resumed clearly at an accelerated name. For example on 6/14 mu	transparent and public process. CCH is working to be more nimble when incidents of
		Anole Watch decide meter showed the sound on my front porch to gen consistently (5.75 decide) and oracionally as louid as 8.6 decide. The usual ambient	this severity occur. CCH has heard the concerns from the community and will be
		sound level in my neighborhood is 45-55. This work went on until early July. If indeed this loud sound was caused by slurry, and not sand blasting, why would the	instituting changes to our procedure for the future.
		MRC refuse a regulator admission to their site? In addition to the noise, sand blasting causes large amounts of potentially dangerous particulate matter in the	
		surrounding area. I suspect that they were using a contractor to sandblast tanks without a permit and attempted to get as much work done using the more	CCH acknowledges your comments regarding noise and inquiries regarding regulators
		effective sandblasting method as they could until they were caught.	from the Air District. CCH defers to the Air District on this matter.
Gavle Goldblatt	Pages 17-18:		

		[Continued Comment from above] Perhaps it was legally true that "we are not sandblasting" (per my phone call) if they were using contractors to perform the	
		work.	
		If, as demonstrated by this recent experience, the MRC has a 'what can we get away with" approach to their plant operations, then we need to consider what	
		would be an effective prevention strategy to ensure the health and safety of our community in the future? Fines don't help people breathe. I would propose - 1	
		ENSURE REGULATOR ACCESS Ensure that all city, county, state, and federal regulators have authority to immediate access the MRC plant to investigate any	
		complaints at any time. 2. SINGLE POINT OF CONTACT An online single point MRC complaint log must be created and maintained that is easily accessible to the	
		public. At minimum, there should be the date of the complaint, how it was made (community members perhaps can be identified by their street address), name	[Continued response from above]
		of agency (ies) involved, name and email address of agency representative involved, the status of the complaint, and the results of the investigation. There	CCH thanks you for your suggestions. In a recent letter issued to MRC on December
		should also be the ability of the public to input possible complaints, in a "pending" category. 3. ACCOUNTABILITY AT THE HIGHEST LEVEL OF LEADERSHIP MRC	28, 2023 (found here:
		leadership must be held accountable for the policies they require their employees and contractors to follow. There must be clear understanding of expectations	https://www.cchealth.org/home/showpublisheddocument/29255/638393577197900
		of compliance with applicable laws and regulator requests. There must be an understanding that any continued behavior in violation of these laws can result in	000) CCH required that MRC (PBF) allow CCH regulators onsite at all times and permit
		potential criminal charges for MRC leadership. 4. ACCESS FOR COMMUNITY Any fines collected should be used to create a single point contact for the	access to any part of the facility. CCH through the oversight committee is currently
		community in addition to the idea of the log above. Thank you again for your work on this project, and for your efforts to attempt to ensure a safe environment	evaluating the Safety Culture of the facility including management commitment to
Gayle Goldblatt	Pages 17-18:	for the people of Contra Costa County and the City of Martinez.	safety. CCH will take your other comments under advisement.
			Thank you for your comments. Should a Major Chemical Accident or Release (MCAR)
			happen in the future, CCH Hazmat through the Industrial Safety Ordinance (ISO) has
			the authority to conduct an independent investigation. Additionally CCH, upon
			notification of incidents of MCAR severity, is able to utilize the Community Warning
		What sort of efforts will be made in the future should something similar happen in the future? If something similar happens in the future are there evacuations	system to direct residents to take proper protective actions such as Shelter in Place or
William Cooper	Page 26:	plans if they are needed?	if necessary evacuation.
			Thank you for your comments. The matter of MRC's failure to notify has been
			referred to the District Attorney (DA). The DA would best be able to speak to the
			status of this. In regards to payment, CCH is authorized by the Industrial Safety
			Ordinance (ISO) to pass the cost associated with the Oversight Committee work to
Cynthia Peterson	Page 28:	Why wasn't CCH notified earlier to give the public info? What ramifications will MRC have? Who is paying for the oversight committee + sampling and contracto	MRC directly.
Quanah Brightman		Page 29: United Native Americans demands that the FBI, EPA, and the Department of Justice shut down the Martinez Refining Company.	
Katherine Marsden	Pages 29 & 30	Page 30: The refinery is a health hazards and unsustainable. The only safe resolution is to shut the refinery down and restore it to open space.	CCH thanks you for your comments.
			Thank you for your comments. Contra Costa Health collaborated early in the
			investigation with the San Francisco Bay Regional Water Quality Control Board
			(RWQCB) and the California Department of Fish and Wildlife. Both these agencies
			have the responsibility of protecting the watershed. The latest information about the
			collaboration was released as a joint statement from agencies on November 16th,
			2023. Routine sample data and monitoring would be covered under the facility
		Why wasn't Ca Dept. of fish and wildlife not included in the initial forums, as the watershed drains directly to the Carquinez strait. Has MRC provided raw	National Pollution Discharge Elimination System (NPDES) Permit and falls under the
Tom Lewis	Page 31:	sample analysis from routine 3rd party testing?	authority of the RWQCB.

Sample ID	Latitude	Longitude
MRC-1	38.014444	-122.133056
MRC-2	37.989167	-122.144444
MRC-3	38.016111	-122.177222
MRC-4	37.996389	-122.1975
MRC-5	38.024722	-122.097222
MRC-6	38.046667	-122.144167
MRC-7	38.059722	-122.168056
MRC-8	38.036667	-122.211389
MRC-9	38.018611	-122.257222
MRC-10	37.971111	-122.243889
MRC-11	37.966944	-122.309722
MRC-12	37.922778	-122.164444
MRC-13	38.018333	-122.128889
MRC-14	38.011111	-122.094722

2365 Harbon View, martine, CA94553 Sept. 2, 2023

Dear CCHHMP, The results of your recent study assuring we citizens of "safe soil" in martinez es meaningless without telling es exactly (locality) where the sampling was done Lis seems like a "cover-sep" that benefits the MRC. Please publisk those locations, in print and degetally. Shank you! Seneerely yours, arlene Gumes

Michael Dossey

From:	Mark Sheeley <msheeley@att.net></msheeley@att.net>
Sent:	Thursday, August 31, 2023 11:24 AM
To:	Hazmat Arpteam
Subject:	[EXTERNAL] Refinery accident comments- Martinez Refinery
Follow Up Flag:	Flag for follow up
Flag Status:	Flagged

This Message Is From an Untrusted Sender

Report Suspicious

You have not previously corresponded with this sender.

Greetings,

In response to your request for comment regarding the Martinez Refinery releases, I would like to recommend more citizen participation regarding the entire refinery safety plan. It is obvious the safety of Martinez citizens is at the bottom of the refinery list of priorities and that will remain until the citizens themselves are allowed to participate in the drafting of any safety measures affecting them.

There are a host of other subjects needing to be addressed. One subject also close to my needs is beautification. Why can they not install more landscaping to help with the unpleasant appearance of the plant? It would result in much better public relations for all. If these subjects alone cannot or will not be discussed or achieved, the refinery in my opinion should be shut down permanently.

I worked inside all the local refineries over the past 40 years for a local contractor and each refinery seems to have a differing level of respect for the local community. It is quite obvious to anyone working inside the fence. I would be happy to serve or assist with the endeavor to correct this problem. Thank you for the opportunity to provide comment.

Sincerely,

Mark Sheeley Martinez, CA resident

Michael Dossey

From:	Eames, Tameji@Cannabis <tameji.eames@cannabis.ca.gov></tameji.eames@cannabis.ca.gov>
Sent:	Tuesday, September 5, 2023 2:50 PM
То:	Hazmat Arpteam
Subject:	[EXTERNAL] Human Health and Ecological Risk assessment draft comments

This Message Is From an External Sender

Report Suspicious

This message came from outside your organization.

Hi,

I live in Martinez and I would like to provide some comments on the draft risk assessment. As an environmental scientist I have a unique perspective on the sampling and the conclusions drawn from the data.

Page 4 - The scientific explanation for why the 14 sites were picked was not clearly articulated. Sure, the sample sites were informed by the BAAQMD model. However, that model, as presented at the city meeting, was based on assumptions that have significant effects on the model's output. Mainly, plume and weather maps rely on a large data set to make informed conclusions – they had a limited dataset (2 days of weather) to inform the model which means the model's predications could be vastly different from reality. My suggestion is that 14 spots all detecting no notable increases, is not a sufficient sample size to properly conclude there is no health risk. 14 samples lack the statistical power to properly report a lack of risk. Finding zero everywhere is not a good answer. We would want to find data that support that model is correct in predicting plume and fallout. Then we can assess for risk.

Page 4 "No visible dust was observed at any of the sample locations." – Duh! No surprise here. Samples were taken May 4-5 when the release was in November 2022 after the heaviest rainfall in CA in a decade. Maybe soil samples aren't going to sufficient to access the risk.

Page 7 – "the soil samples do not appear to have the same composition as the spent catalyst dust or bulk samples." I would not expect the soil samples to have the same composition. The soil samples should have other things plus elevated levels of the release dust. Different ratios of the chemicals of interest would be expected. We do not have a sample of the soil prior to the release so there is not a good understanding of baseline.

Page 11 – "However, aerated garden soils in neighborhoods surrounding MRC would generally contain the less soluble, less mobile, and less phytoavailable pentavalent arsenic. – There needs to be a citation for this – how are you sure this is true? Provide a reference for this statement.

Page 14 – "None of the metals analyzed exceed the expected regional background range," – What is the background range for an area not proximate to a refinery? Say Danville... Saying that the soil samples do not exceed background levels is not the same as saying there is a healthy concentration of trace elements (listed on page 5) in the soil where sampled.

Page 14 – "Two metals (arsenic and lead) exceed residential direct contact screening levels, however these exceedances are not likely associated with the spent catalyst material, as the proportions of the metals found did not match the spent catalyst composition in the bulk material or dust (wipe samples)." – This statement does not make sense. The lead in the ground could have come from the catalyst. Why would you expect the proportions of metals in the soil to match the proportions of the catalyst exactly? MRC has released chemicals for years so the soil is already contaminated. There would not be equal ratios if there were already high lead concentration contaminated soil. We do not have a baseline

lead measurement for this soil *prior* to the catalyst release so how can you say this is a non-issue when the levels exceed the residential direct screening levels? And the term "not likely." This should come with a confidence interval. How "non-likely?" This is not a quantifiable measure and the whole point of testing is to *quantify*!

I am disappointed with the superficial effort put forth with this sampling paradigm and report. I would like to see a significantly larger breadth and depth of testing to 1) support the BAAQMD plume model (nothing in the risk assessment report confirms or denies the model was well-informed), and 2) to ensure that the food I eat out of my garden is safe because this report does neither.

T.J. Eames 2471 Leslie Ave Martinez

Tameji (T.J.) Eames

Environmental Scientist Compliance Division

> Direct: 916.214.0817 info@cannabis.ca.gov www.cannabis.ca.gov [cannabis.ca.gov]

Department of Cannabis Control CALLFORMIA

CONFIDENTIALITY NOTICE: The information contained in this e-mail and attached documents may contain confidential information that is intended only for the addressees. If you are not an intended recipient, you are advised that any disclosure, copying, distribution, or the taking of any action in reliance upon the information enclosed is prohibited and that you should notify the sender and delete this communication from your system

From: City of Martinez <communications@cityofmartinez.org>
Sent: Tuesday, September 5, 2023 9:31 AM
To: Eames, Tameji@Cannabis <Tameji.Eames@cannabis.ca.gov>
Subject: City News and Events - Martinez Pride, Martini Shake-Off & More City News!

[EXTERNAL]: bounce-mc.us10_174832305.13534724-ca5c394f13@mail227.sea101.rsgsv.net

CAUTION: THIS EMAIL ORIGINATED OUTSIDE THE DEPARTMENT OF CANNABIS CONTROL! DO NOT: click links or open attachments unless you know the content is safe. NEVER: provide credentials on websites via a clicked link in an Email.

View this email in your browser

×

City News

Thinking of building an Accessory Dwelling Unit?

An Accessory Dwelling Unit, also known as an "ADU", is a residential unit that provides independent living facilities including a kitchen, sleeping, and bathroom facilities. A Junior Accessory Dwelling Unit, also known as a "JADU", is a residential unit that is no more than 500 square feet in size, contained entirely within the walls of an existing residence and has a separate entrance, an efficiency kitchen and may include a separate bathroom or may share a bathroom within an existing residence.

Now it's even easier to create the space of your dreams right in your own backyard. Whether you're looking to create flexible living spaces for friends and family or explore rental opportunities, the City's updated regulations, which went into effect on August 18, 2023, pave the way. ADUs and JADUs can often be built at a fraction of the price of a single-family home, while widening the range of available housing options. For more information, please visit the City's new <u>ADU webpage</u>, where you'll find information on the process, costs, and other helpful resources. Together, we're building a brighter future, one ADU at a time!

Study Session: Waterfront Marina Trust Lands Use Plan

Interested to learn about future plans at the Waterfront? Please attend this week's City Council Study Session on Wednesday, September 6 at 5:30 p.m. in the Council Chambers to learn about the draft Waterfront Marina Trust Lands Use Plan. The Martinez Marina encompasses approximately 70 acres in three parcels within the Martinez shoreline area, including the marina, a portion of North Court Street, Yacht Club and Eagle Marine. The marina includes 332 boat slips, a park, open space and marine-related businesses. An additional 65 acres consists of Trust lands held by the East Bay Regional Park District (EBRPD) which are leased to the City, and include baseball fields, Martinez Bocce Federation courts area, trails and a horse arena. The entire waterfront area subject to this planning effort covers approximately 135 acres. The Plan is designed to guide local decision making on how to maximize the recreational and economic benefits of the Martinez waterfront, marina, and adjacent lands.

Learn how to join a meeting or review the agenda here: https://bit.ly/3toofeW

Pavement Rehabilitation Project Update

You may have seen ADA curb ramps being constructed on Howe Road, Old Orchard Road, and Arnold Drive. This is a part of the City's Pavement Rehabilitation Project, funded by Measure D! Paving work on these streets is scheduled to begin on Tuesday September 5th. Construction will continue through the end of October and will vastly improve the ride quality.

Please observe all signage, including detours. For residents in the vicinity of the project, please be on the lookout for door hangers from the construction contractor with more information. Project information is also available on the City's website at <u>www.cityofmartinez.org</u>.

Martinez Refining Company Updates

MRC Oversight Committee Update

Scott Berger & Associates was hired by the County to conduct the independent root cause analysis investigation and has been working with MRC on a nondisclosure agreement (NDA). Since the last staff report to the City Council meeting on July 19, 2023, a non-disclosure agreement was fully executed allowing for the investigation to move forward. Next steps will require MRC to provide numerous documents in response to the investigation, along with a site visit by the investigations team.

On July 27, 2023, the Industrial Safety Ordinance (ISO) / Community Warning System (CWS) Ad Hoc Committee (County Supervisors Glover and Gioia) met. At that meeting, the Committee directed a Safety Culture Assessment, pursuant to the ISO, be conducted to understand the underlying safety culture issues that need to be remedied.

These two assessments - the Root Cause Analysis and the Safety Culture Assessment - follow the Community Risk Assessment that was completed in the Spring, which evaluated the impact of the November 24/25 incident on public health. A draft report of the Community Risk Assessment has since been produced and the public can now provide public comment on the report until the public comment period closes on October 12, 2023. A public meeting will also be held at the Contra Costa Administration Building on September 25, 2023, from 6:00 p.m. to 8:00 p.m. to receive feedback on the draft report. Comments can be emailed to hazmat.arpteam@cchealth.org.

- Read the City's full MRC update clicking <u>HERE</u>.
- Read the draft Community Risk Assessment HERE.

Upcoming Meetings & Events

Ci<u>ty Meetings</u>

- City Council Meeting Wednesday, September 6 at 7:00 p.m.
- Veterans Commission Thursday, September 7 at 6:30 p.m.
- Parks, Recreation, Marina and Cultural Commission Meeting Tuesday, July 19 at 7:00 p.m.

View City Council meetings and agendas at <u>Meetings and Agendas | Martinez,</u> <u>CA (cityofmartinez.org)</u>.

Upcoming Events

- Farmers' Market Every Sunday from 9:00 a.m. to 1:00 p.m.
- Open Air Market Sunday, September 10 from 9:00 a.m. to 1:00 p.m.
- Annual Martini Shake-Off September 16 from 6:30 10:00 p.m.
 Buy tickets here <u>Intro (martinezmartini.com)</u>
- Martinez Pride Saturday, September 23 from 11:00 a.m. to 2:00 p.m. at Waterfront Park
 - More information here <u>Martinez Pride Tickets, Sat, Sep 23, 2023</u> <u>at 11:00 AM | Eventbrite</u>

Help the City be Prepared for an Emergency

Disasters can strike at any time, so it's important to be prepared! The City of Martinez Community Emergency Response Team (CERT) invites you to attend a free, Basic Training Course on emergency response. The course consists of 25 hours of instruction and covers Personal and Family Preparedness, Earthquake Preparation, Team Organization, Medical Operations and Triage, Damage Assessment, Fire Suppression, Utility Control and Light Search and Rescue. Below is the schedule:

- Every Wednesday in September from the 6th-27th
- Every Wednesday in October from the 4th-25th

All classes will be held at the Martinez Senior Center (818 Green St.) from 6-9:30 p.m.. For more information and to register, visit: <u>https://bit.ly/3ZIIXqk</u>

Para Traducir/For Translation

- 1. Para traducir un correo electrónico una vez que esté en su bandeja de entrada, haga clic en "Ver este correo electrónico en su navegador"
- 2. Clic el botón "Traducir" en la esquina superior derecha de la página
- 3. Seleccione su idioma preferido en el menú desplegable Traductor de Google
- 4. Ver la campaña traducida

Copyright © 2023 City of Martinez, All rights reserved.

Our mailing address is: 525 Henrietta Ave Martinez, Ca 94553 Want to change how you receive these emails? You can <u>update your preferences</u> or <u>unsubscribe from this list</u>.

Michael Dossey

From:	Wendy Ke <wke_aloha@yahoo.com></wke_aloha@yahoo.com>
Sent:	Wednesday, September 6, 2023 1:44 PM
То:	Hazmat Arpteam
Cc:	Kim McCarl
Subject:	[EXTERNAL] Thank you!

This Message Is From an External Sender

This message came from outside your organization.

Report Suspicious

All,

I just wanted to thank CC Health and Hazmat staff for the mailer you sent to residents of Martinez related to MRC incidents and the Risk Assessment. We appreciate your efforts to keep our community informed about these ongoing issues.

Best regards, Wendy Ke Downtown Resident & Healthy Martinez Member

Sent from Yahoo Mail on Android [mail.onelink.me]

Michael Dossey

From:	Tom Kellogg <ggollekmot@hotmail.com></ggollekmot@hotmail.com>
Sent:	Thursday, September 7, 2023 9:13 AM
То:	Hazmat Arpteam
Cc:	Tom Kellogg
Subject:	[EXTERNAL] Comments on the report RE MRC accident

I would like to know how you arrived at the conclusion that the release did not exceed regional background levels when they are expressed in concentrations, e.g., ug/L, and your analyses are expressed in ug/wipe.

V/R,

Thomas Kellogg

Sent from Mail [go.microsoft.com] for Windows

Michael Dossey

Kevin Burke <kevin@burke.dev></kevin@burke.dev>
Thursday, September 7, 2023 4:30 PM
Hazmat Arpteam
[EXTERNAL] Comment on hazardous material evaluation

This Message Is From an Untrusted Sender

Report Suspicious

You have not previously corresponded with this sender.

We're concerned that the County's 2040 General Plan and 6th Cycle Housing Element are planning to place a disproportionate amount of the County's new housing in polluted areas close to refineries and other sources of pollution.

While the County and the Air Quality Management District try hard to mitigate sources of pollution, this incident demonstrates they are not perfect at doing so, and/or not given adequate notification by facility managers, which leave residents at risk.

It would be preferable to plan a disproportionate amount of the County's new housing stock to go in places that are located far from existing heavy industry sites. I encourage the Health Hazardous Materials Program staff to work with DCD on the County's long range planning efforts.

Best, Kevin [EXTERNAL] comments: risk assessment evaluation of the November 24-25 spent catalyst release from the Martinez Refining Company

Jan Warren <jtxwarren@gmail.com> Wed 10/11/2023 10:04 PM To:Hazmat Arpteam <Hazmat.Arpteam@cchealth.org>

This Message Is From an Untrusted Sender You have not previously corresponded with this sender.

Report Suspicious

Attn: Michael Dorsey,

I'm going to begin my comments with the observation that CA Soils baseline was from Bradford-Kearney Foundation Report dated 1996. The background concentrations of trace and major elements in CA Soils.

The other baseline used was Western (West of 96th meridian0 Shacklette and Boerngen 1984 elements. The concentrations in Soils and other Surficial Materials of the Conterminous U S Geological Survey Professional Paper 1270.

On the one hand old data is being used and it is an overall average of a large area of different environments. Secondly, there is no reference to verify what areas were even used as various locations around the State of CA the Western U.S.

I searched more recent data from the Berkeley Lawrence National Laboratory, NIOSH, OSHHA, OSHA, and the US Environmental Protection Agency for specific levels of health risk of different components of elements in the samples of the 14 locations in the MRC area.

ARSENIC

The recommended exposure limit set by the National Institute for Occupational Safety and Health (NIOSH) is 2 microgram per cubic meter of air for no more than a 15 minute period, based on classification of arsenic as a potential human carcinogen.

The Occupational Safety and Health Administration (OSHA) has set a permissible exposure limit (PEL) of 10 micrograms of arsenic per cubic meter of workplace air (10 μ g/m³) for 8 hour shifts and 40 hour work weeks.

The EPA has stated that levels of arsenic in soil from 5 ppm up to 20 ppm are generally viewed as safe, even if contact with arsenic at these levels continues for many years.

The report states that arsenic exceeded ecological soil of 25 mg/kg at MRC sample site 7 at 28mg/kg.

Action level means employee exposure, without regard to the use of respirators, to an airborne concentration of lead of 30 micrograms per cubic meter of air $(30 \ \mu\text{g/m}^3)$ calculated as an 8-hour time-weighted average (TWA).

- OSHA set a Permissible Exposure Limit (PEL) for lead in workplace air of 50 µg/m³ (8-hour time weighted average).
- OSHA mandates periodic determination of BLL for those exposed to air concentrations at or above the action level of 30 μ g/m³ for more than 30 days per year.
- The worker must be notified in writing within 15 days after the receipt of the results or any monitoring performed, and provided with a medical examination if a BLL is found to be greater than 40 μ g/dL.
- The employer is obligated to remove the employee from excessive exposure, with maintenance of seniority and pay, until the employee's BLL falls below 40 µg/dL if a worker's one-time BLL reaches 60 µg/dL (or averages 50 µg/dL or more on three or more tests) in general industries or shipyards, or 50 µg/dL in construction.

• The National Institute of Occupational Safety and Health (NIOSH) at CDC has set a Recommended Exposure Limit (REL) of 50 μ g/m³ for a Time Weighted Average (TWA) of 8 hours to be maintained so that worker blood lead remains <60 μ g/dL of whole blood.

• The report states 32/mg/kg level of safety, yet 2 locations MRC-1 at 82/mg/kg and MRG-2 at 130 mg/kg greatly exceed the healthy safe target.

There are 4 community sample wipes that vary considerably in different types of metals.

The report states that the soil samples were taken anywhere from 0-6". I would like to see the same element compared from the same depth at the different locations. It isn't stated and there is no identification at what level the samples were taken. That doesn't seem scientific to me.

In general I object to comparisons of actual samples taken near MRC being compared against average old data instead of taking actual samples from real areas that can be identified.

Thank you for the opportunity to comment.

Jan Warren

3202 Primrose Lane

Walnut Creek, CA 94598

[EXTERNAL] Public Comment response to Contra Costa District Attorney investigation about Martinez Refining Company failure to notify authorities as is legally required what was original cause and what is an effective prevention strategy for the future?

Gayle Goldblatt <gayle94553@yahoo.com> Thu 10/12/2023 2:09 PM To:Hazmat Arpteam <Hazmat.Arpteam@cchealth.org>

This Message Is From an Untrusted Sender

You have not previously corresponded with this sender.

Report Suspicious

Public Comment response to Contra Costa District Attorney investigation about Martinez Refining Company failure to notify authorities as is legally required—what was original cause and what is an effective prevention strategy for the future?

I appreciate this opportunity to provide feedback. As a resident of downtown Martinez, with many years experience with refinery issues, I wish to provide my observations and concerns about the Martinez Refining Company (MRC).

It is essential that businesses operating in Contra Costa County are respectful and considerate of the health and safety of the residents. And while I can appreciate that the main focus of the investigation is the November 2022 ("Thanksgiving") incident, I am concerned that the MRC may have an operational strategy of disregard of the community and an approach to their operations characterized by a "what can we get away with?" business approach. The key question for your investigation then is, was this incident a single error in judgement, or potentially an illumination of a policy of plant maintenance and care that cavalierly disregards the health and safety of the community? In addition, what was the reason for the excessive amount of time to provide soil testing results? Was this by design or default?

I have little confidence in the motivation of MRC because in May, when there were literally reporters circling for quotes about the possible soil contamination, they initiated a loud, multimonth maintenance project with a significant impact on the community, with no notice to neighbors.

Very loud noise (65-85 db) began the week of 5/22. My neighbors who work construction identified it as the sound of sand blasting. I called the refinery and was told "we aren't doing any sand blasting" and abruptly the work stopped. When the work resumed the following week, I contacted the State Air Board (on 6/6) and spoke with Anais. She came out to investigate in person. She told me she could clearly hear how loud it was from outside the plant perimeter. She said that she could not locate the specific work site and that when she called them to discuss, they stated they were not sandblasting, they were "using slurry", refused to allow her on site to observe, and stated that notice had been sent out. Interestingly, a letter was drafted dated 6/6 informing the neighbors of this project, calling it a maintenance project and that it would conclude in October. I suspect this Air Board inquiry motivated the communications which should have occurred prior to starting the project.

After this Air Board visit, it was silent for the rest of the week. The following week, the work resumed, clearly at an accelerated pace. For example on 6/14 my Apple Watch decibel meter showed the sound on my front porch to be consistently 65-75 decibels and occasionally as loud

as 86 decibels. The usual ambient sound level in my neighborhood is 45-55. This work went on until early July.

- If indeed this loud sound was caused by slurry, and not sand blasting, why would the MRC refuse a regulator admission to their site?
- In addition to the noise, sand blasting causes large amounts of potentially dangerous particulate matter in the surrounding area.
- I suspect that they were using a contractor to sandblast tanks without a permit and attempted to get as much work done using the more effective sandblasting method as they could until they were caught. Perhaps it was legally true that "we are not sandblasting" (per my phone call) if they were using *contractors* to perform the work.

If, as demonstrated by this recent experience, the MRC has a 'what can we get away with" approach to their plant operations, then we need to consider -- what would be an effective prevention strategy to ensure the health and safety of our community in the future? Fines don't help people breathe.

I would propose --

1. ENSURE REGULATOR ACCESS

Ensure that all city, county, state, and federal regulators have authority to immediate access the MRC plant to investigate any complaints at any time.

2. SINGLE POINT OF CONTACT

An online single point MRC complaint log must be created and maintained that is easily accessible to the public. At minimum, there should be the date of the complaint, how it was made (community members perhaps can be identified by their street address), name of agency (ies) involved, name and email address of agency representative involved, the status of the complaint, and the results of the investigation. There should also be the ability of the public to input possible complaints, in a "pending" category.

3. ACCOUNTABILITY AT THE HIGHEST LEVEL OF LEADERSHIP

MRC leadership must be held accountable for the policies they require their employees and contractors to follow. There must be clear understanding of expectations of compliance with applicable laws and regulator requests. There must be an understanding that any continued behavior in violation of these laws can result in potential criminal charges for MRC leadership.

4. ACCESS FOR COMMUNITY

Any fines collected should be used to create a single point contact for the community in addition to the idea of the log above.

Thank you again for your work on this project, and for your efforts to attempt to ensure a safe environment for the people of Contra Costa County and the City of Martinez.

Gayle Goldblatt 1446 Beech Street Martinez. CA 94553

[EXTERNAL] Comments to TRC Report of 8/2023

Kathy Petricca <kpfast@aol.com> Thu 10/12/2023 4:15 PM To:Hazmat Arpteam <Hazmat.Arpteam@cchealth.org>

This Message Is From an Untrusted Sender

You have not previously corresponded with this sender.

Report Suspicious

The Executive Summary of the TRC Report titled Screen Level Human Health and Ecological Risk Assessment of August 2023 lists 4 main bullet points. (See page v and page 5 of the whole TRC report.)

First is a determination of the nature and extent of the release. The nature is a broad term, but the proposed extent of the release is the Plume Model produced by the Bay Area Air Quality Management District (BAAQMD), released the following Spring. (See timeline of Chart 1, page vii, page 8 of the whole report.)

Second is the chemical composition of the dust. The McCampbell sampling and analysis was requested by the Contra Costa County Health Department (CCH) and BAAQMD on 11/26/2023 on a RUSH basis. The TRC Report refers to the evidence of the dust as including dust particles from "vehicles, trash cans, and residential garden areas within the community". (See page v.) The rest of the TRC soil sampling uses different sites in central and eastern areas of the county. The 5 locations of the McCampbell are all in the City of Martinez. (See Appendix A, page 13/16, or page 62 of the whole report.)

The TRC sampling map is based on the BAAQMD Plume Distribution model and includes central and eastern areas of the county. It lists 2 City of Martinez sampling sites (Susana Park and Highland Avenue Park), and a close-by site (Camino Del Sol. (See Figure 1, page 34 of the whole report. See also Attachment E and page 127 of the whole report.) By May, when TRC sampling was done, that no dust was found that seemed like catalyst is not surprising.

Third is the extent of dust in the soils within the release area. It is based on the larger area of the Plume Model and doesn't refer to the catalyst analysis of McCampbell analysis. Instead TRC's commentary is on what would be expected and what would not be expected, and which level is not likely to be associated with catalyst dust. (See Executive Summary, page vi and page 7 of the whole report.) TRC states "Soil samples did not appear to have typical make-up of spent catalyst dust.' (See page vi.). The samples of the catalyst analyses by McCampbell is not mentioned.

Sample D-6 of the McCampbell work order was collected on 11/28/2022, three days after the release. Eighteen test names are listed. (See page 80 of the whole report.) Sample D-6 is the background sample. (See page 9/16 and page 75 of the whole report.)

BAAQMD wrote a request for lab analysis of the samples of November, including a sample taken from COBS main hopper, which also has field comments about a sample of spent catalyst from the main hopper at COBS. (See page 14/16, and page 63 of the whole report.) BAAQMD also requested an analysis of samples 1-6 with sites D-1 to D-5 being compared to D-6. D-6's location is listed as 3487 Pacheco Blvd, the address of Martinez Refining Company.

Contra Costa News of 11/29/2022 printed a statement from the Martinez Refining Company: "The tests confirm the samples are 'spent catalyst' that originated from the refinery's Fluidized Catalytic Cracking Unit and the catalyst had been incinerated at high temperatures to remove impurities for reuse in the refinery process and was accidentally released during overnight hours on Thanksgiving night."

Fourth is the potential risks to human and ecological receptors posed by exposure to dust in a residential setting.

I won't list any comments on the fourth bullet point. I believe the above omissions of the actual and timely sample of the actual catalyst, and the residential samples in Martinez make conclusions based on far-flung sampling of other county soils questionable. Plus, TRC's discussion of even more far-flung soils in Napa County and Union City, Alameda County is a distraction and a comparison of Contra Costa soils to them is also questionable for the purpose at hand.

[EXTERNAL] Concerns over TRC Soil Sampling Post MRC Refinery Incident on Thanksgiving Evening 2022

charlesdavidson@me.com < charlesdavidson@me.com> Thu 10/12/2023 5:09 PM To:Hazmat Arpteam <Hazmat.Arpteam@cchealth.org>

This Message Is From an Untrusted Sender You have not previously corresponded with this sender.

Report Suspicious

To: Contra Costa County Hazardous Materials Division, Dept. of Health Email: Hazmat.Arpteam@cchealth.org

Subject: Concerns over TRC Soil Sampling Post MRC Refinery Incident on Thanksgiving Evening 2022

From: CHARLES DAVIDSON, Hercules, CA

Dear Contra Costa County Hazmat Division,

I wish to address the apparent discrepancies and concerns in the soil contamination study conducted by TRC following the MRC Refinery event on Thanksgiving evening 2022.

Inadequate Sampling Locations: The TRC study indicated only two out of the 14 sample locations were from areas that experienced visible deposition from the MRC event. This is concerning, especially when TRC's Gale Hoffnagle acknowledges the likely heavy deposition *nearby* the refinery.

Sampling Methodology: TRC's Jonathan Scheiner noted that their sampling locations were determined by the BAAQMD's plume model. However, if the goal was to evaluate the "worst-case" scenarios, then basing the study on only two visibly affected locations (nearby and downwind of) the refinery seems counterintuitive out of a total of 14 locations (with the majority of sample locations from between 5 and 15 miles to the west).

Depth of Soil Samples: The depth at which the samples were taken is questionable, especially considering the samples were taken almost three quarters of a year post-event and after multiple atmospheric river winter storms. A mere 6-inch depth at only two affected sites makes the scientific relevance of such samples highly suspect.

Air District's Role: My discussions with the Air District revealed that they neither provided specific advice to TRC nor CC Health on utilizing the provided map for sampling. It appears the map was more of a starting point rather than an exact guide, raising further questions about the selected sample locations.

Clarification on Air District's Role: Per my communications with BAAQMD: "The Air District did not provide specific advice to TRC or CC Health on how to use the map" And The Air
District, in both remote meetings and written documents, clarified that this map provided modeled deposition values as a starting point for purposes of informing the soil sampling program; this modeling map was not developed to identify where residents are impacted by catalyst materials."

Recommended Sampling Approach: For a more robust and credible study, TRC should have begun their sampling from the center of the visible deposition area near the MRC refinery and then expanded outward. This method would be akin to how Mohs surgery identifies and removes cancer margins.

Role of the County: The county's delay in conducting a comprehensive sampling post the incident, especially ahead of the winter storms, raises concerns. Immediate sampling would have been more informative and credible, even if a consultant like TRC was to be engaged later.

Historical Context: The very notion that there was no rise in soil heavy metals around a century-old heavy crude refinery seems improbable. Historical data suggests such refineries have been sources of airborne contamination.

Concerns about Ongoing Emissions: Beyond this event, there is a broader concern about the continued emission of PM2.5 particulate matter, which has known severe health implications due to its ability to deeply penetrate lungs and carry toxic heavy metals.

Recommendation: It's imperative that comprehensive heavy metal sampling be conducted not just in the soil but also inside nearby residential areas, particularly inside homes.

In light of the above concerns, I strongly urge a re-evaluation of the current findings and an indepth, scientifically sound study to ensure the health and safety of our community.

Sincerely,

CHARLES DAVIDSON

[EXTERNAL] 9/13/23 A 45 day comment Hazmat

Katie Keenan <glazankakk@gmail.com>

Wed 9/13/2023 4:18 PM

To:Hazmat Arpteam <Hazmat.Arpteam@cchealth.org> Cc:glazanka <glazanka@gmail.com>

This Message Is From an Untrusted Sender

You have not previously corresponded with this sender.

Report Suspicious

Contra Costa Health Hazardous Materials Program 4585 Pacheco Blvd. Ste 100 Martinez, Ca 94553

Hello

Here is my email concerning event November 2022 MRC accident; spending "Spent Catalyst" into the surrounding community.

Both my husband and I coughed for

2 weeks following the incident.

Regardless of the findings I disagree.

My neighborhood was not contacted.

I have 6 fruit trees which yearly produced fruit except after 11/2022! The leaves were wilted and white [not frost burned brown.] It is 9/13/23 and not one piece of fruit!

I've since dug up Topsoil surrounding the trees and placed new compost. Yet

This damage A after the spent catalyst which from rains penetrated the soil. I am

Hopeful next year fruit returns.

Do not tell me they were "safe levels"

ONLY - you write ONLY arsenic and lead exceeded screening levels!

BOTH ARE TOXIC to humans and animals!

What is the District Attorney doing?

Please respond that this was received.

Two pictures: one from 6/5/22 of my Nectarine tree Full of fruit!! Next 2023

This picture of same nectarine tree 6/21/23 shriveled white leaves NO FRUIT!

10/25/23, 12:17 PM

Sent from my iPhone

cchealth org

Public Comment

Public Comment Instructions 1. It is important to complete this card legibly as it is a public record. Please print clearly. Name: William DODE Phone #:___ Address: 486 Morello Ave #214 Martine, 94533 9,6 Email (Optional): I wish to be added to the Interested Party Database some Dury similar happen in The Forme Dury similar happens in The If something Similar happens in The **Comments:**

cchealth.org

Public Comment
Public Comment Instructions
1. It is important to complete this card legibly as it is a public record. Please print clearly.
Name: Kathleen Clancy Phone #:
Address: Manching, CA
Email (Optional):
I wish to be added to the Interested Party Database
Comments:
Re. Jenny Phillips comment specific focues was on Dord Samples collected from the Surface to 6" down only because this type certainst closes not seech into water for co not di listed by heavy rain. When it rains often the top layer is carried away hit + by the rain/ water wido rewer drains. As not worth effected

cchealth.org

Public Comment

Public Comment Instructions
1. It is important to complete this card legibly as it is a public record. Please print clearly.
Name: <u>(yrthia peterson</u> Phone #: 4158024000
Address: 1301 Alhandra Ave, MTZ
Email (Optional):
I wish to be added to the Interested Party Database
Comments: Why wasn't CC ft notified earlier to give the public info? What ramifications will MRC have? What contractor? What contractor? What contractor? What contractor?

Public Comment

Public Comment Instructions

1. It is important to complete this card legibly as it is a public record. Please print clearly.

Name: Quanal Brightman Phone #: (510) 672-7187

Address: 165 ZZnd Street, Richmond, CA 94801

Email (Optional): _

🔀 I wish to be added to the Interested Party Database

comments: United Native Americans Demands that The FBI, EPA, and the Department of Justice Shut Down the Martinez Refining Company!

Public Comment

 Public Comment Instructions

 1. It is important to complete this card legibly as it is a public record. Please print clearly.

 Name:
 Katherine

 Marsdeen
 Phone #:

 \$10 - 693 - 7130

Address: 4550 Hagg Rd; Martiner

I wish to be added to the Interested Party Database

Page 30

4

cchealth.org

Public Comment

r ubile comment
Public Comment Instructions
1. It is important to complete this card legibly as it is a public record. Please print clearly.
Name: Tour Lewis Phone #: 925 348 4470
Address: 9 Corte Estrella, Martinez
Email (Optional): <u>Fallenlewis & e gmail</u> , Com
V I wish to be added to the Interested Party Database
Comments: Why wasn't Ca Dept & fish + Wildlife Not included in the mitial forums, as the watershed drains directly to the Carguinez
HAS MRC Provided RAW Sample Analasys From Routine 3rd party testing?

10/9/23

These TRC studies are skewing background numbers. They have cherry-picked other sources to ratchet up current background levels. Historically background numbers have come from Berkeley Lawrence Lab, reasonable since they are in the shadow of Chevron refinery. However, this TRC study introduces numbers that are outliers, and should not be considered as background.

For example, zinc. The mean for Berkeley Lawrence Labs is 64. Yet, TRC looked at 8 sites in other counties, and most were below 100, as with Berkeley Labs. However, there was one outliner, in Union City, at 474 mg/kg. which became our high normal for background levels in this county, according to TRC. Geographically too far away for comparison. Not good science, as that number is an outlier and should be ignored. The daily, safe level of zinc ingestion for humans is 2mg/kg.

Also, Chromium. Also, toxic. At Berkeley Lawrence Labs the background of Chromium is 100 mg/kg. Yet, our new hi normal is 1690 mg/kg. TRC added data from the Napa fire 2017, and at only one, of six sites was 1690. Another outlier. That event incinerated everything, commercial and residential. Humans and pets. All contain Chromium. That is an erroneous normal for contamination. Yet it skews numbers considered background, and real contamination hides behind those numbers. The daily safe Chromium intake for humans is 2.0 mg/kg.

DTSC calls this an Error II mistake, or a false negative. And as TRC knows, they never look back. Once set by the county, they will remain unchanged. We cannot set background levels so very high for our communities.

DTSC also recommends studies for legacy pollution to include a "coring" of soil, as they do in the ocean. This gives a vertical picture through time of the pollutants. They test the core top to bottom, to that interface where no pollution occurs. An important timeline. And not performed.

As a reminder, this a risk assessment document. I've only seen numbers from soil sampling. However, a true risk assessment would include the repercussions of contamination of heavy metals for health conditions. Including back-ground contamination. Demographics of who is affected, old and young typically. Cancer? or non-cancer repercussions.. Heavy metals tested, and what are symptoms. We are still at risk, especially since these numbers are set at an unusually high level.

Identify the risks. That's the point.

Two last things to consider. This May 2023 analysis is too late for a November 2022 event. After 6 atmospheric rivers, this data is too old. Also, of 14 samplings, only 3 were actually close to the site of release. Again, this is not good science.

Maureen Brennan

Rodoo CA