TALKING POINTS – BRENTWOOD OIL FIELD PROPOSAL

- Brentwood oil provides State and local tax revenue, jobs and less greenhouse gas emissions than the oil it displaces
- The proposed well location is over 1,100' from the closest home and cannot be seen from <u>any</u> Brentwood home
- 2 independent noise studies show at 1,000' the drilling rig cannot be heard above ambient (background) noise. Drilling will take approximately 12 days
- If successful, production operations are significantly quieter than drilling operations and the oil, gas and water is produced into a <u>closed system</u>
- California imports 63% of its oil to meet demand. What we do not produce in California we import. Brentwood oil produces 38% of the greenhouse gases that it will displace. It is a net benefit on global warming
- California has over 15 million registered vehicles with less than 5% electric and average automobile lifespan of 11.5 years. Fossil fuel demand will continue so our decisions should be based on producing less environmentally impactful oil
- Transportation, followed by electricity generation, are the top 2 GHG emission sources

California Crude Oil Supply

- California appetite for oil is substantial and driven almost entirely by transportation fuels
- Annual oil demand is approximately 620 million barrels
- Only 37% of California's annual oil appetite is produced in California
- There are no pipelines that supply oil into California so the remaining 63% of oil is delivered by tanker each year (550-700 oil tankers annually)
- Railcar delivery to California is expanding, but is only currently around 1.2 million barrels/year or 0.002%

Carbon Intensity of Imported Sources of Oil

- When considering foreign sources of oil there are a number of key factors that affect the carbon intensity
- Several foreign sources of oil can be produced with much less energy use however their CI is mostly affected by VVF (venting, flaring & fugitives) and transportation
- For example, Iraq has higher CIs mostly because the production methods have a lot of VVF related emissions
- On the other hand, Saudi Arabia has a much lower CI and their oil is easier to produce and their production methods better capture VVF emissions

Import Source	Barrels	% of Imports	CI (gCO2/MJ)
SAUDI ARABIA	78,153,000	20.92%	6.79
ECUADOR	54,222,000	14.51%	8.77
IRAQ	52,526,000	14.06%	12.08
COLOMBIA	34,279,000	9.17%	6.49
ANGOLA	14,931,000	4.00%	8.47
CANADA	14,245,000	3.81%	18.99
BRAZIL	10,137,000	2.71%	7.00
RUSSIA	9,528,000	2.55%	12.09
KUWAIT	4,659,000	1.25%	5.65
PERU	2,566,000	0.69%	6.05
VENEZUELA	2,370,000	0.63%	21.98
OMAN	1,645,000	0.44%	12.30
ALGERIA	1,310,000	0.35%	11.40
OTHERS	6,719,000	1.80%	11.40
ALASKA	86,362,000	23.11%	12.81
	373,652,000	100.00%	10.058

Typical marine oil tanker delivering 63% of California's oil

OK

Active field working sheet - DO NOT MODIFY

Active field:

Figure 1.1: Summary GHG emissions

Brentwood future

© CO2 Sequestration © Offsite emissions © Transport © Misc. © VFF © Waste © Maintenance © Processing © Production © Drilling

1 Summary results

Model error check:

Table 1.1: Summary GHG emissions		
GHG emissions [gCO2eq/MJ]		
Active field	Brentwood future	
Exploration	0.01	
Drilling	1.26	
Production	0.88	
Processing	0.46	
Maintenance	0.00	
Waste	0.00	
VFF	2.62	
Misc.	0.50	
Transport	0.08	
Offsite emissions	-1.96	
CO2 Sequestration	0.00	
Net lifecycle emissio	3.83	

	8.0	
[rw/	6.0	
CO2eq	4.0	*
ons [g(2.0	
amissi	0.0	
GHG e	-2.0	
	-40	

10.0

Figure 1.2: Summary energy consumption

Brentwood future

Table 1.2: Sun	nmary energy consum	ption	
Energy consumption [MJ/MJ]			
	Brentwood future		
Exploration	0.00		
Drilling	0.00		
Production	0.01		
Processing	0.01		
Maintenance	0.00		
Waste	0.00		
Transport	0.00		
Total	0.023		

Carbon Intensity of California Oil Production

- Ironically, production of crude oil in California does not always result in a lower Cl compared to the average Cl for imported sources
- The weighted average CI for all of California oil production is 12.9 gCO2/MJ which is slightly higher that the weighted average of imports
- California production has a very broad range in carbon intensity
- The top ten producing fields range from 4.27 to 28.82 in Cl
- Key factors affecting this CI range can be predominantly characterized by production methods (e.g. steam flood methods are very energy intensive and will have a higher CI)

Top Producing Fields in California

Field	Production (BOPD)	CI (gCO2e/MJ)
Midway-Sunset	88,788	21.18
Kern River	75,004	9.55
Belridge, South	72,522	14.49
Cymric	42,399	19.91
Wilmington	36,577	6.36
Elk Hills	35,548	5.36
Lost Hills	31,321	11.40
San Ardo	16,571	28.82
Coalinga	15,448	25.36
Brentwood	200	3.83

Comparison of Carbon Intensity by Source

With the difference in carbon intensity and direct displacement of imports total GHG saving associated with PowerDrive Project is 60,000 tons of CO2 over the life of the project and 1,000 – 6,000 tons of CO2 annually.

	PowerDrive Project CO2 Savings	Savings in the Context of Vehicle Carbon Footprint Annually*	Savings in the Context of Carbon Footprint per Capita for a California Annually**
Life of Project (15 Years)	60,000 tons CO2	5,000 cars	2,777 people
Annually	1,000 – 6,000 tons CO2	333 cars	185 people

- * Annual vehicle CO2 emissions for a average passenger vehicle is approximately 5 tons
- ** Per capita CO2 emission for an average Californian is approximately 9 tons