Attachment

Item 1

Contra Costa Health Services
Hazardous Materials Programs
Tait Environmental Services, Inc.
August 2019
table of contents
2.2.2 Solano County Flow Study Data 2016 .. ${ }^{16}$

3.1 Railroad Data

4.0 COMMUNITY RISK ASSESSMENT FOR HAZARDOUS MATERIALS................ 54

 $\begin{array}{lll}\text { 3.3.3 } & \text { Martinez Area Pipeline Data.. } 30 \\ \text { 3.3.4 } & \text { Pittsburg }\end{array}$
ch Area Pipeline Data..
4.1.1 Rising Tides Data
,

3.3.1 Richmond Area Pipeline Data ... 25 .4. H.

 TABLE OF CONTS
 TRODUCTIO

 d Solano Counties
 2.1.2 Highway Data..

3.3 Plpelline Data

Hazardous Materials Commodities Flow Study with Sepcial Focus on Sea Level Rise and Flood Rlsk Contra Costa County, Califormla
 Contra Costa Health Services, Hazardous Materials Programs TAIT Environmental Services, Inc.

The project consisted of the completion of an initial Hazardous Materials Commodities Flow Study sumbud se, (CCHSHMP). The project was restricted to the coastal areas of the Contra Costa County in areas
affected by rising tides.

1.1 Project Objectives

The proposed overall structure for the completion of the project covered two (2) distinct areas to prepare a CRA for the coastal areas of Contra Costa County. The objective of the Flow chemical spill on critical and vulnerable populations and facillitial effects/consequences of a
 transport of hazardous chemicals through the County, and particularly within areas of the

 in the CRA portion of this report.
Utilization of this information allowed for the study to focus on and determine a series of
vulnerable points ("pinch points"), primarily along the rail lines. Additional information used to locate the pinch points consisted of a review potential flooding due to rising tides, with information available from the Adapting to Rising Tides Program, locations of critical facilities
and vulnerable populations, areas of high probability of liquefaction and vulnerable populations, areas of high probability of liquefaction resulting from
earthquakes, and specific arterial roads that could be affected by disruption of rail transport of hazardous materials. Once specific pinch points were located, a comprehensive CRA was

The objective of the CRA portion of the project was to utilize the data obtained from the Flow Study to determine the potential impacts of a hazardous materials accidentlincident to the
most vulnerable populations and critical facilities (vulnerability zones) within the hara materials transportation corridors in Contra Costa County. The data from the Flow Study and comprehensive report with conclapping and have been combined herein within a single
 and training to allow emergency responders and Region II LEPC with respect to equipment
accidentincident/disaster within coastal Contra Costa County.

Hazardous Materials Commodity Flow Study with

TAIT Environmental Serices, inc.

Background historical information used in preparing both the Flow Study and CRA portions of this project was obtained from the following sources:

- Hazardous Materials Transportation Study for Contra Costa County, 2005; and - Highway flow study data from Marin and Solano Counties.
2.1 Hazardous Materials Transportation Study 2

A Hazardous Materials Transportation Study was performed on the County in 2004 and 2005.
The reference for the study is as follows:
Contra Costa Health Services, Hazardous Materials Programs and Califomia Department
of Health Services, Environmental Health Investigations Branch, 2005, Hazardous Materials Transportation Study for Contra Costa County, CA, 71 p.

The study was a two-part investigation, which included a railroad transportation survey, and
a highway transportation survey. Details of these surveys are outlined in the sections below. 2.1.1 Railroad Data

Two railroads are the primary transportation railroads in Contra Costa County, Union Pacific Railroad (UP), and Burlington Northern and Santa Fe Railway (BNSF). Railway
data from UP covered the period from January through December 2004, and the data from BNSF covered the period from April 1, 2004 through March 31, 2005 . Most of the
hazardous materials loads were carried on the following rail segments:

The data covering the maximum loads via any Contra Costa rail shipment is contained in (STCC), which is specific to rail transportation, and is shown below.

Table 14，continued					
STGE：	Deserfiption	Max Loads	STCE：	Deacriplion	$\begin{gathered} \text { Max } \\ \text { Loands } \end{gathered}$
4921414	CHLOAOPICRM	${ }^{23}$	4912388	setrolum oismlutes noos．	10
4008620	ACRMONTILIE－NHRBIED	22	499875	HYCROGENPEROXIDE，AO．SOLT	
4503170	CAFTRIDGES FOR Wentows	21	${ }^{4925123}$	acricamide	12
4921579	toluene disacyanate	21	4835268	CORROSNE LIOUD，Eassc，MPORGA	
4SOATV	Procumes	20	\＄935605	ETHANCLAMNE	
4518311	amanonitm nitrate	20	499714	POLYMERIC BEASS，EXPANDABLE	12
4501801	amunition，lluminating	19	＊961466	Encines，internal Combustion	12
${ }^{4} 5081183$	hexanes	19	4903316	CHARGES．PROPELINGG，FOR CANHON	
4936540	cofrosive licuids，no．s．	19	4508382	Petroleun istulates mo．s．	
4901833	fuses，oftonating	${ }^{18}$	4835240	waste scollm hitroxios schution	10
4805428	日UTMENE	18	4814108	сомвияtiele lourd．a．s．	10.
40887851	OXIIZNE SOLIO，NO．S．	${ }^{18}$	49341503	aceticacio solution	10
4885753	15O日ltame	17			
${ }_{4}^{48102789}$	FTHANOL	17			
＜ 508178	NOSOUINE LAMATION GRSOLINE，	18			
	leaded	16			
4808380	methanol	16			
4912804	ADHEsmes	15			
4851102 486100	FUMGGATEO UNIT OTHER REGULATED SUBSTANCE Lにした	15 15			
$49083{ }^{\text {a }}$	tetrahiordifupan	15			
4902732	AMMLITITN，SMOKE	14			
c503320	FIREWORKS	4			
4592255	dichioropropenes	19			
4904318	pentafluorotihane	13			
450924	ETHVL Methi Xetone	13			
4016185	FLAmMarde licencs no．	13			
4899999	materal not classifhale	13			
450181	cartrioges for weapons	12			
480575	Propyene	12			
$\frac{1}{5098219}$	FLAMEALE LlCunos．n．o．S．	12			
STCC－Slandard Transportation Commodity Code（specific to rail fanaportalion） ＂Max loads＂－The moximum number of kosds for each material（each STCC sode）carried on any one rail segment in Contra Costa County over a 12 month period（2004－2005）．Nete：This mothod avoids duplivata counting of loads loads transported in the county in a year． carried from one rail Begrment to the other（a common occurrence）but probably underestimates the total number of ＂N．O．S．＂－not otherwise specified．					
Note：Malerial descriptions were provided by the railroads as the＇one－lincrs＇shown above．In some cases worded descriptions are the same although the STCC codes are different．These are different types of the generic material（s）that ceuld not be described on one texi linc．More information on STCC codes is available at URL：htins：／hww．steelmonds．convindex isp（click on＂product codes＂）．					

In addition to the above total shipping data for hazardous materials via the railroad in this within Table 16 of the survey．Those data are shown below．

Survey* Table 4: All UN Numbers Recorded from Hazarious Material Trucks during Entre			
$\begin{aligned} & \text { UN } \\ & \text { number } \end{aligned}$	Material	Frequency	Percent
1203	Gasoline	1.094	33.92
3257	Elovated tamp. liquil, nos	336	10.42
1075	Liqutiled petroieum gas, eq.g. propans, butane,	274	8.50
1993	Comburtibis liquid, nos	256	7.94
2448	Sulfur, moten	189	5.86
1791	Hypocthorito solution	116	3.80
2187	Carben dioxide, relfig liguld	104	3.22
1977	Nitrogen, refrig. liquid	100	3.10
1824	Sodurn hydroxide solution	97	3.01
3264	Corrosive liquid, accaic, morganic nos	58	1.80
1073	Oxygen, refrig. liquid	55	1.71
1987	Alcohols, nos	40	1.24
1830	Sulfurce acid	35	1.09
3082	Environ, hazardous Hquicic or haz. waste, lipudd nos	32	0.99
1263	Paintrolated materisl	26	0.81
1951	Argon, refthg. kquid	25	0.78
2672	Ammonialammonium hydroxida solution	25	0.78
2693	Bisuiftes, aqueous sedution	23	0.71
1789	Hydroctionic actd	21	0.65
1863	Fuat, avistion	21	0.65
Nolo	(UN number not identilded)	20	0.62
3077	Environ, hazardous solid or haz waste, sclid, nos	15	0.62
1780 2582	Corrosive liquid, nos	14	0.43
2582	Fentic chloride solntion	11	0.34
1017 3285	Chiorine	10	0.31
3286	Corrosve Ilquil, basic, thorganic nos	10	0.31
1005	Ammonia, anhydrows	d	0.28
1049 1805	Hydrogen	9	0.28
1805	Phosphoric acid	8	0.25
2031 2796	Nitric acid Battery fuid sulturic acid	8	0.25
1048	Battory fluid, sulturic acid Hellum	8	0.25
1888	Resin eocturion	7	0.22
2488	Ammonium nitrale, hot concenitrated solution	7	0.22 0.22
3267	Carosive lizuid, basic, orgente, nos	7	0.22
$\begin{aligned} & \text { partist 10 } \\ & 1090 \end{aligned}$	(conrosive" placara)		0.22
	Acelone	6	0.19

Hazardous Materials Commodity Flow Study with
 Contra Costa County, Calffornia August 2019

2.1.2 Highway Data

Highway placard survey data was collected for the 2005 report from both the fall of 2004
Data from the highway placard survey is compiled in the report in various tables. Table 4
shows all of the United Nations (UN) chemical identification numbers from all data from
the highway placard survey and is shown below.
 the "Toxic by Inhalation" trucked materials (Table 12). These three (3) tables are reproduced
below.

Table 12: "Toxic by Inhalation" (THW) Trucked Materiels Total

Table 5: Comparison of Most Common UN numbers from Fatil 2004 and Summer 2005 Truck Surveys:

Resource Management, Environmental Heallh Division in May 2016. Both the Marin County
and Solano County agencies were contacted to request the use of the highway placard data
data includes highway transportation of hazardous materials at the locations where it enters sections.
2.2.1 Marin County Flow Study Data 2014

Highway placard survey data from the Marin County Flow Study was obtained for
Interstate-580 where itflows in both north and south directions through the Richmond-San Rafael Bridge. The results of that study are presented below.

Hazardous Materrals Commodity Flow Study with Contra Costa County, Callfomla
August 2019

TAilT Environmental Services, inc.

Hazardous Materials Commodity Flow Study with
Contra Costa County
August 2019
TAugust Environmental Services, Inc.

Hazardous Materials Commodity Flow Study with
Speclal Focus on Sea Level Rise and Flood Risk
Contrac osta County, California
August 2019
TAlit Environmental Services, Inc.

HAZMAT COMMODITIES
I-80 (Westbound to Contra Costa County)

Hazardous Materlals Commodity Flow Study with Contra Costa County, California
August 2019 TAIT Environmental Services, Inc.

The data for the commodities Flow Study was obtained from the UP and BNSF Rairoads and from industry chemical data. Data from hazardous materials transport via pipeline are included in this section. Historical data conceming rail, roadway, and pipeline hazardous materials
incidents is also contained in this section. Utilization of Google Earth and Google Maps for base incidents is also contained in this section. Utilization of Google Earth and Google Maps for base
maps to portray the various data occur throughout this section and the remainder of the report. 3.1 Railroad Data

Railroad commodity data was obtained and managed by CCHSHMP from both UP and BNSF Rrimt the years 2016 -2018. Otained data is used solely for and by a bona fide emergency
planning and response organization for the expressed purpose of emergency and contingency planning and response organization for the eepressed purpose of emergency and contingency
planning. All Sensitive Security Information was managed as such by CCHSHMP and
detaild infor

The following collection of data provides a comprehensive overview of the total rail traffic The following collection of data provides a comprenensive ovenview of the total rail train
through Contra Costa County during the years analyzed. Charts in the following sections
summarize the overall data with respect to the following: - Total loaded rail traffic;

Total loaded rail traffic;
Loaded intermodal rail trafic; and
High movement of materials and mate
The Total loaded rail traffic consisted primarily of gases, flammable and combustible liquids,
and corosive substances, with lesser amounts of toxic substances and miscellaneous
Loaded intermodal rail traffic was predominantly miscellaneous hazardous materials with
less than 3% explosives, gases, flammable/combustible liquids, flammable solids, oxidizers and organic peroxides, and corrosive substances.

Hazardous Materlals Commodity Flow Study with

 Contra Costa County, CallformiaAugust 2019
TAIT Environmental Services, Inc.
understanding of what impacts would be possible directly relating from industry due to a
dissuption of rail transportation. disruption of rail transportation.
Unfortunately, the results of the Industry Questionnaire were not obtained as part of this project
Information concerning undemround pipelines in Costa Mesa County was obtained from the Information concerning underground pipelines in Costa Mesa County was obtained from the
website of the National Pipeline Mapping System (NPMS) at hittps://www.npms.phmsa.dot.gov. A map showing the pipelines in Contra Costa County is
shown below. Most of the pipelines in the County are located in the coastal areas, and in

Due to the large number of pipelines in the County, the coastal part of the County was
subdivided into four (4) areas. Detailed maps showing the hazardous liquid pipelines and subdivided into four (4) areas. Detailed maps showing the hazardous liquid pipelines and
 liquid pipeline maps refer to the detailed pipeline data listed in Appendix A.
Maps showing the gas transmission lines are also shown, but the various pipelines have not been detailed. The primary constituent of the gas transmission lines is natural gas.
CCHSHMP gained support from the Community Awareness Emergency Response (CAER) group as an emergency response agency and as a leader in community health and safety. The mission of CAER is to actively enhance public health and safety. CAER leadership
believes this Flow Study supports this mission and identifies emerging threats in our believes this Flow Study supports this mission and identifies emerging threats in our by both the Hazardous Materials Commission and the Contra Costa County Board of Supervisors, a gap in understanding of the impacts of hazardous materials transportation was
 the San Francisco Bay Area.
CAER holds representation from a majority of the large industrial facilities located in Contra Costa County. In order to further validate and identify chemicals of concems, as determined f CAER. This questionnaire addressed hazardous materials transported to and from the acilities, approximate volumes, issues with flooding and other disruptions, as well as
alternative arrangements made to ship hazardous materials. The hope was to gain a better

Hazardous Materials Commodity Flow Study with Speclal Focus on Sea Levelfise
Contra Costa County, Gallfomia
August 2019
TAIT Environmental Services, inc.

Based on the data, it was determined that the major materials of concern were Propane
(UN1075), Sulfuric Acid (UN1830), and Anhydrous Ammonia (UN1005).

Other Hazardous
Maxerials
230

3.2 Industry Chemical Data

Hazardous Materials Commodity Flow Study with Contra Costa County, Callfornla
August 2019
TAIT Environmental Services, inc.
The gas transmission pipelines and hazardous liquid pipelines for the Richmond area
are shown in the following maps. Details for the hazardous liquid pipelines are contained

Hazardous Materials Commodity Flow Study with Hazardous Materials Commodity
Speclal Focus on Sea Leveve Rise and Flood Risk
Contra Costa
August 2019 3.3.2 Crockett Area Pipeline Data The gas transmission pipelines and hazardous liquid pipelines for the Crockett area are
shown in the following maps. Details for the hazardous liquid pipelines are contained in

Hazardous Materials Commodity Flow Study with
Speclal Focus on Sea Level Rise and Flood Risk
Contra Costa County, Callfornia
August 2019
TAIT Environmental Services, inc.

Chemicals Involved in Incidents	Number of Incidents		
Anhydrous Ammonia	1		
Propane	1		
Sulfuric Acid	2		
Hydrochloric Acid	1		
DieselVGasoline	6		
Ethanol	1		
Oils/Sludge	3		
Herbicide	1		
Powdered Aluminsm	1		
Bleach	2		
Total			13

Each of the above three general categories was further subdivided into the following
subcategories:

> Number of incidents by railroad company; Number of incidents by cause of incident; and Number of incidents by city.
The total number of incidents (140), both hazardous and non-hazardous, occurring on the
rairoads in Contra Costa County from the period from 2000 through 2019 are illustrated rairoads in Contra Costa

Hazardous Materials Commodity Flow Study with Contra Costa County, Califorma
August 2019
TAIT Environmental Services, Inc.

The number of railroad incidents involving hazardous materials (46 incidents) occurring in
Contra Costa County from the period from 2000 through 2019 are illustrated in the following charts.

Hazardous Materials Commodity Flow Study with
Special Focus on Sea Level Rise and Flood Risk
Contra Costa County, California
August 2019
TAfT Environmental Services, Inc.
The number of rairoad incidents resulting in hazardous materials spills (19 incidents)
occurring in Contra Costa County from the period from 2000 through 2019 are illustrated occurring in Contra cos

Hazmat Spill Rail Incidents 2000-2019
Contra Costa County
\#UP
\# BNSF
\#RPRC
\#Amtrak
亦

Hazardous Materials Commodity Flow Study with
Sperial Focus on Sea Level Rise and Flood Risk
Contra Costa County, California
August 2019
TAIT Environmental Services, inc.
A review of the above data indicates the following trends:

- Major cause of total rail incidents is derailment;
Major causes of hazardous materials spill incidents are derailment, leaking Major causes of hazard; Both UP and BNSF lines contained the major portion of the total rail incidents,
 Total rail incidents were located primarily in the cities of Richmond, Martinez, Pittsburg, Rodeo, and Crockett, and.
Hazardous materials spill incidents were located primarily in Richmond, Martinez, Rodeo, and Crockett. 3.4.2 Highway Incidents

Data concerning hazardous materials incidents involving the highway and roadways in
Contra Costa County were obtained from the following sources: California Highway Patrol (CHP).

PHMSA Data Mart Hazardous Materials, on line at
https://portal.phmsa.dot.kov/analyticsSOAP/saw.dlliPDashboard.
The California Highway Patrol provided general data for the years 2016 through 2018.

 The data are summarized in the following table.

Hazardous Materials Commodity Flow Study with
Special Focus on Sea Level Rise and Flood Risk August 2019
TAIT Environmental Services, inc.

Hazardous Materlals Commodity Flow Study with
Spacial Focus on Sea Level Rise and Flood Rlisk
Contra Costa County，Calliomla
August 2019 TAIT Environmental Services，inc．

x．axemex	nawnemed	\pm		sw	－mas mmanmes	armm	swevze		\％${ }^{29}$
\％	Town	swo	－	cs	파	rusemememe	wurzs	unaike	wherexume
no	macer	cmand		－a	nemom	summanmo	ucm	5	Stionuxame
	Trum	siemo	－	sax	Speryw	muspramm	mzxan	－	maxamix
\％andeme	vewer	mines	\％	nex	wovermy	nusmes	мсемия	axas	－
Ineman	sour	meso	－	ara		mosmenemen	мпеsas	Nome	nexambe
useax	seux		s	4	monmen	ravementime	негия	mas	newnis
	soux	มมู		««1	manc ucomek	man moxaman	aresur	ename	meante
\％amed	4844		\％ep		manemeno	\％ere	＊0	40	\％mey

squep！juן 10 上eqund

\|電		5 $\frac{5}{8}$	$\begin{aligned} & E \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 卢 } \\ & \text { 5 } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \text { 慮 } \\ \hline \end{array}$	$\begin{aligned} & \text { 点 } \\ & \text { 至 } \end{aligned}$	锘	$\begin{aligned} & \stackrel{5}{5} \\ & \stackrel{5}{1} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { 旨 } \\ \text { en } \\ \hline \end{array}$	$\begin{aligned} & \text { 总 } \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 着 } \\ & \text { 蒝 } \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$		建				$\begin{aligned} & \text { E } \\ & \stackrel{5}{5} \\ & \hline \end{aligned}$		官			部	晨
	$\begin{aligned} & \text { 榗 } \\ & \text { 害 } \end{aligned}$	1	－		$\begin{array}{\|l} \text { 覚 } \\ \hline \end{array}$										部				量	喠	量	量	䂡		要
电		－	槀	曾	0	－	－	\cdots	$\begin{array}{\|l\|l\|l\|l\|} \hline 8 \\ \hline \end{array}$	\div	曻	\％	ส	$\underline{3}$		\cdots	$\frac{x}{y_{z}}$	$\begin{array}{\|l\|l\|} \hline 2 \\ \hline 8 \\ \hline 8 \end{array}$	螈	－	鬼	容	$\begin{array}{\|l\|l\|} \hline \text { 管 } \end{array}$	－	暏
	星	＂	\cdots	＊	－	\cdots	－	＂	－	－	－	＊	\cdots	－	＊	\cdots	\cdots	－	＊	＊	－	ส	\％	\cdots	－
要	$\begin{array}{\|l\|} \hline \frac{2}{5} \\ \hline \end{array}$	s	\％	E	\％	E	E	4	？	交	党	\％	2	E	3	回	F	易	［	厚	需	星	\％	3	E
	$\begin{aligned} & \frac{1}{3} \\ & \frac{2}{5} \\ & \frac{1}{8} \end{aligned}$		曾		$\begin{aligned} & \text { E } \\ & \hline \end{aligned}$				$\begin{aligned} & 8 \\ & \frac{8}{2} \\ & \frac{1}{3} \\ & \hline \end{aligned}$						$\begin{aligned} & \text { 言 } \\ & \text { 若 } \\ & \hline \end{aligned}$								震	宾	
$\left\|\begin{array}{l} \frac{9}{2} \\ \frac{y}{2} \\ \frac{3}{3} \end{array}\right\|$	$\frac{\text { 亳 }}{}$			$\begin{array}{\|l\|} \hline \text { E } \\ \text { E } \\ \text { E } \\ \text { } \\ \hline \end{array}$				䡌		$\begin{aligned} & \frac{8}{6} \\ & \text { 喜 } \\ & 8 \end{aligned}$		$\begin{aligned} & \frac{1}{6} \\ & \frac{6}{5} \\ & \frac{1}{5} \\ & \text { f } \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{H} \\ & 5 \\ & 5 \\ & 5 \\ & \mathbf{j}_{8} \end{aligned}$		$\begin{aligned} & 4 \\ & \frac{4}{4} \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & 5 \\ & 5 \\ & 8 \\ & 8 \end{aligned}$					㜢	等	皆	
$\|\vec{s}\|$	管	品	$\begin{aligned} & \text { 䧻 } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{5}{6} \\ \hline \end{array}$	亳	$\begin{array}{\|l\|} \hline 5 \\ \hline 4 \\ \hline \end{array}$	登	$\begin{aligned} & \text { 坒 } \\ & \frac{1}{\overline{3}} \end{aligned}$		$\frac{\pi}{8}$	筫	䪪	登	总	喜	$\frac{0}{6}$	$\begin{aligned} & \frac{1}{2} \\ & \hline \frac{1}{5} \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \hline \end{aligned}$	管	S	容	$\frac{6}{6}$	倉	旨	皆
5	高		$\begin{aligned} & \frac{8}{8} \text { 5 } \\ & \hline \end{aligned}$		$\stackrel{g}{8}$	\％	5	8	告	号	度	$\frac{1}{6}$	K	1	䬰	\％	$\frac{5}{3}$	E	$\begin{aligned} & \text { 筫 } \\ & \hline \end{aligned}$	${ }_{\text {免 }}$	雱	$\frac{8}{8}$	两	8	$\frac{8}{5}$
$\begin{array}{\|l\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \end{array}$		量 营 E	$\begin{array}{\|l} \hline 8 \\ \hline \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{8}{2} \\ \frac{5}{8} \\ \hline \end{array}$		官			$\begin{aligned} & 8 \\ & \frac{8}{y} \\ & \hline \end{aligned}$	ह	$\frac{5}{5}$		$\frac{8}{8}$ $\frac{5}{8}$ $\frac{5}{8}$						最 $\frac{1}{2}$			量	5 5 8 8 8 8 8	$\begin{aligned} & \text { 爰 } \\ & \text { 厚 } \\ & 8 \end{aligned}$	

Hazardous Materials Commodily Flow Study with
Special Focus on Sea Level Rise and Flood Risk
Contra Costa County，Californla
August 2019
TAlT Environmental Services，inc．

Hazardous Materials Commodity Flow Study with
Special Focus on Sea Level Rise and Flood Risk
August 2019
TAIT Environmental Senvices, Inc
Several different hazardous materials classes are represented in the releases as shown
in the following chart.

Information concerning hazardous materials incidents on a nationwide basis was available
U.S. Department of Transportation, Bureau of Transportation Statistics, March 15,
U.S. Department of Transportation, Bureau of Transportation Statistics, January 1,
2015, Facts and Figures 2015 .
Information from the Bureau of Transportation Statistics (BTS) included data concerning
total truck trips and total truck hazardous materials incidents for the years from 2010

Hazardous Materlals Commodtry Flow Study with Contrac Costa County, California August 2019 TAIT Environmental Services, inc.

Hazardous liquid pipeline data for the Martinez area are shown in the following map and
table. Information was also available for gas transmission line incidents in the Martinez
area.

Hazardous Materials Commodity Flow Study with

Hazardous Materials Commodity Flow Study with
Hazarcous Materials Commodity Flow Study with
Speecial Focusu on Sea Levev. IIse and Flood Rlsk
Contra
Augusta Count 2019
TAIT Environmental Services, inc.
Other general assets that could be affected by a hazardous materials incident are:

- Vulnerable Populations; and
Vulnerable populations are often present in close proximity to major transportation corridors. standpoint, they tend to be lower-income areas.
- Hazardous matenials producers/users/transporters located within the coastal areas of Transportation routes of hazardous materials along the UP and BNSF Rairroads in the - Evaluation and determination of the five (5) pinch points based on the locations where a hazardous incident is more ilikely to to occur and the effects on critical facilities and Land use in high--isk areas (commercial, industrial, residential); Lemographics;
Utilization of Ca
- Incorporation of ALOHA/CAMEOMMARPLOT data and ERG data into the CRA for highnisk areas;
risk
Potential in
- Evaluation of the vulnerability of specific areas.
4.1 Determination of Pinch Points
Five pinch points were determined during this study for extended analysis in the event that a
hazardous materials incidentaccident occurred at these locations. The pinch points were

The locations of the 5 pinch points are shown on the map below.

Hazardous Materials Commodity Flow Study with
 Contra Costa County, Califormia August 2019 TAIT Environmental Services, inc.

Adapting to Rising Tides Bay Shoreline Flood Explorer, 2019, San Francisco Bay
Conservation and Development Commission's Adapting to Rising Tides Program, on
Adapting to Rising Tides East Contra Costa Shoreline Flood Explorer, 2019, San
Francisco Bay Conservation and Development Commission's Adapting to Rising Tides Program.

Flooding due to rising tides and sea level rise can have a significant impact on the ground transsortation of goods, including hazardous chemicals, as well as commuters, and the
ability of first responders to respond to emergency siuations. Impacted transportation routes include railroads, roadways, and pipelines.

Two major raill lines are located in the coastal areas of Contra Costa County. Union Pacific
 southeasterly toward Tracy. Burlington Northern and Santa Fe Railroad (BNSF) operates from Richmond along the coast to Pinole where it heads inland to Martinez where it joins
the UP line. BNSF is directed easterly toward Pittsburg, and then on to Stockton. Richmond Pacificic Railroad Companyt (RPC) leases about at miles of UP track in the
western part of Richmond. The UP rail line is also used by passenger/commuter trains. The effect of rising tides on the rail lines can be summarized as follows:

Rail lines located along the shorelines serve as a first line of defense against inland
fooding also known as ad hoc flood protection; flooding, also known as ad hoc flood protection;

- Dissuption of rail line transportation can have significant impacts on the movement
of goods through Contra Costa County, particularily altemate transportation along roadways;

In the event of flooding, the stability of the rail lines in some areas (ballast and
track bed materials) may be at risk of becoming structurally unsound;
Groundwater table rise due to climate change could also result in the instability of
the rail lines due to the potential damage to track bed and ballast materials; and Certain areas of the rail lines are in areas at risk of high to very high liquefaction in
the event of an earthquake.

In Contra Costa County, a total of 14 miles of rail is within the 100 -year floodplain, including the coastal floodplain and the tidal creeks and channels. The information contained in the
ART report includes only the area of the County from Richmond to Bay Point. Data from
 This is shown in the following chart which is noted as Table 29 in
ART Project document referenced above and is reproduced below.

The determination of the pinch points was dependent in part on the following parameters,
which were used to perform the CRA:

Rising Tides data and areas most susceptible to rising tides and sea level rise; California Healthy Places Index indicating vulnerable populations;

 California Healthy Places Index;Location of CalARP Facilities;
Locations of Critical Facilities;
Chemicals of Concern;
Weather data;

- Critical Arterial Road Locations.

These parameters are described in detail in the following sections and are tabulated in the
various parts of Section 5 of this report. 4.1.1 Rising Tides Data

A critical aspect of the determination of pinch points is an analysis of flooding due to rising
tides and sea level rise, including king tides and storm surges. These critical aspects will
be summarized in this section based on the data available from the following sources:
Contra Costa County ART Project, March 14, 2017, Adapting to Rising Tides: Contra Costa County Assessment and Adaption Project, 188 p .

As with the railroads, portions of the freeways are susceptible to damage due to sea level transportation of commercial goods along the rail lines, signif
the roadways to move cargo and people through the area.
Numerous pipelines carry hazardous chemicals through the coastal areas of Contra Costa
County. According to the Contra Costa County ART Project document, approximately County. According to the Contra Costa County ART Project document, approximately
 County. Many of the pipelines are collocated with the rail lines, and issues due to rising
tides and sea level rise could equally affect the pipelines, resulting in major chemical spills
from the pipelines.

> Hazardous Materials Commodity Flow Study with Contra
Ausust 2019
TAIT Environmental Services, inc. Using the Adapting to Rising Tides Bay Shoreline Flood Explorer, the project compiled ata for three different - 12-Inch Sea Level Rise, Equivalent to King Tide with no Sea Level Rise; - 36-Inch Sea Level Rise, Equivalent to 50 -Year Storm Surge with no Sea Level
The above flooding scenarios were chosen due to various factors including likelihood of that flood event occurring. 12-Inch Sea Level Rise, for example, is equivalent to a King one-in-five chance (20% chance) of occurring on any given year, and a 50 -Year Storm one-in-five chance (20%
Surge has a 2% chance.
Also, sea level rise probability predictions were considered. According to the State of Califormia Sea Level Rise Guidance 2018 Update, sea level rise in the San Francisco area
is predicted to be between six (6) to 10 inches by 2030 and 13 to 23 inches by 2050 .

For more information regarding probabilistic prediction, please see:
 http://www.opc.ca.gov/webmaster/ftp/pdffagenda items/20180314/tem3 Exhibit- A OPC SLR Guidance-rd3.pdf

For purposes of the CRA, only the 12 -inch Sea Level Rise, equivalent to a King Tide with
no Sea Level Rise will be used in the Chemical Plume analysis section of this report
These three scenarios for Richmond and Martinez areas of Contra Costa County are

These three scenarios for the eastem portion of Contra Costa County were obtained from
the Adapting to Rising Tides Eastem Contra Costa Shoreline Flood Explorer, and they are
 g uonoos u! passnosip suogenol zulod

Hazardous Materials Cammodity Flow Study with Special Focus on Sea Level Rise and Flood Risk Contra Costa County, Californla August 2019 TAIT Envlronmental Services, Inc.

4.1.2 California Healthy Places Index
The California Healthy Places Index (HPI) was used as an aid to determine more vulnerable populations for the CRA, including areas of lower income residential development. The HPI is available on line at https://map.healthyplacesindex.org/. The HPI
indicators were developed using the following data: Economic;
Education;

- Social; $\begin{aligned} & \text { - Clean Environment; } \\ & \text { - Housing; and } \\ & \text { - }\end{aligned}$ The HPI indicators are supported by a number of Decision Support Layers as follows: - Health Outcomes;
- Health Risk Behaviors;
Climate Change-Exposures;
- Other Indices of Disadvantage;
Based on the above data, each area is given a percentile score which fall within the
following parameters from "less" to "more" healthy conditions as follows:
0-25 (least);
- $\mathbf{5 0 - 7 5}$; or
A generalized map of Contra Costa Caunty is shown below. Detailed maps will be
provided with the various pinch point locations.

Hazardous Materials Commodity Flow Study with Special Focus on Sea Level RIse and Flood Risk Contra Costa County, Callfomla August 2019
 TAIT Environmental Services, Inc.

4.1.4 CalARP Facilities
Contra Costa Health Services provides an on-line listing of sites that are part of the
California Accidental
Release
Prevention
(CalARP) https: Ilcchealth.ord/hazmat/mpl. Locations of CaIARP facilities aided in the determination of the pinch points, as hazardous chemical from some of the CalARP sites
were transported through the area along the railroads and roadways. Some of the CaIARP facilities are considered to be critical operating facilities, as they include water treatment and energy generation /transfer facilities, as well as large economic centers.
In the event of rail incident resulting from derailment or other cause due to rising tides and subsequent flooding, major rail transport of manufactured goods, including hazardous
materials via rail may be seriously disrupted for unspecified periods of time. Alternate shipping routes, including other rail lines, arterial roadways, and ports will be subjected to increased volumes of traffic, potentially resulting in increased transportation-related
incidents along all transportation lines.
Currently, a Hazardous Materials Commodity Flow Study is being undertaken for 11 California deep water ports, including the Port of Richmond by Dr. George Lane of the
Center for Catastrophic Risk Management of the University of California at Berkeley. This study is being funded by CalOES, and the results are separate from this project.
A map locating the CaIARP facilities in the coastal areas of Contra Costa County is shown
below.

Hazardous Materlals Commodity Flow Study with
Speclal Focus on Sea Level Rise and Flood Risk
Contra Costa County, Callfomia
August 2019
TAIT Environmental Services, Inc.
A list of these critical facilities, which are located within one to two miles of the pinch points
is contained in Appendix B. Maps showing the critical facilities listed above are contained
in the following pages.
The locations of critical facilities in relation to the identified pinch points was of primary

Many of these facilities are relevant to other hazards than the release of hazardous facilitites that may contain vulinerable or essentiau emergency popula
mitigation/evacuation in the event of a hazardous materials release.

Hazardous Materials Commodity Flow Study with Contra Costa County, Callfornia
August 2019
4.1.6 Chemicals of Concern

Based on the Flow Study from the railroads, it was determined that the following 3
 incident/accident:

- Ammonia/anhydrous ammonia: highly toxic; Propane. highly exp
Costa County; and
- Sulfuric acid: commonly transported along the railroads in Contra Costa County. These chemicals are discussed in detail in subsequent sections of this report.
4.1.7 Background Weather Data

Background weather data for use in the plume diagrams were obtained from the following

- Weather data for the city of Martinez was obtained from hittp://www.city-data.com/

Weather for the coastal regions of Contra Costa County was available for several cities within the County. For the most part, weather patterns for the coastal cities are very
similar, as shown by the weather data below. This information was used as the basis of
 analysis, as it determines the direction which the plume will travel over the land surface.
and

Hazardous Materials Commodity Flow Study with
Spectal Focus on Sea Level Rise and Flood RIsk Contrac Costa County, Califorma
August 2019
TATT Environmental Services, Inc.
4.1.8 Railroads

Rairroads in Contra Costa County primarily of the following railroad lines:
Unon Donifo Dosimand (IUP)

Union Pacific Railroad (UP);
Burlington Northern and Santa Fe Railroad (BNSF);
Richmond Pacific Railroad Company (RPRC); and
Bay Area Rapid Transit (BART).
Detailed information on the railroads in Contra Costa County can be obtained from the
following source:
U.S. Department of Transportation, Federal Railroad Administration, on line at
httos://fragis.fra.dot.gov/gisfrasafetv/
A generalized map showing the rail lines and freight stations for Contra Costa County was
compiled from the above source and is shown below.

Two major rail lines are located in the coastal areas of Contra Costa County. UP operates Two major rail lines are located in the coastal areas of Contra Costa County. UP operates
along the sho reline area of the County from Richmond to past $1-680$ through Marriezez,
where it is directed easterty toward Pitsburg and then southeastery toward Tracy where it is sirected easterty toward Pittsburg, and then southeasterly toward Tracy. BNSF it joins the UP line. BNSF is directed easterly toward Pittsburg, and then on to Stockton. it joins the UP line. BNSF is directed easterly toward Pittsburg, and then on to Stockton.
RRRC Ieases about 11 mile of UP track in the western part of Richmond. The UP rail line
is also used by passengercommuter trains.

Many of the rail lines are co-located with underground pipelines, particularly along the
coastal areas. Portions of the rail lines are located in areas of 12-inch (and greater) level rise, as well as in some areas of high to very high liquefaction which could be caused level Ise, as well as in some areas of high to very high iquefaction which could be caused
by earthquake events. Rail lines in these areas could become compromised, resulting in

Hazardous Materials Commodity Flow Study with
Special Focus on Sea Level Rise and Flood Risk
Contra Costa County, Californla
August 2019
TAIT Environmental Services, inc.

ARTERIAL ROADS AND HIGHWAYS	
PINCH POANT LOCATON	ARTERIAL ROADS AND HIGHWAYS
Rlchmond \#1	1-580
	Carison Blid.
	Potuero Ave.
	Regatta Blvi.
Richmond ${ }^{\text {\% }}$	1-580
	Richmond Parkway
	Earrell Avel
	McDonald Ave.
	W. Ohio Ave.
Martinez ${ }^{\text {a }}$	1-680
	Marina Vista Ave
	Shell Ave
	Pacheco 3ind
	CA-4
Bay Point ${ }^{4}$	CA-4
	Kinney Bivd.
	Port Chicago Highway
Antioch ${ }^{\text {\% }}$	CA-4
	W. 10th Street

4.2 Release Plume Analysis

Plume diagrams for release of hazardous materials from the pinch points are contained in this the U.S. Environmental Protection Agency (EPA). The CAMEO suite consists of CAMEO the U.S. Environmental Protection Agency (EPA). The CAMEO suite consists of CAMEO
chemicals, ALOHA plume modeling through various release scenarios, and MARPLOT, which
assists in plotting the information onto various map bases, such as Google Earth.

The plume diagrams are utilized in determining the extent of threat zones based on the

- Red zone: Highest threat level
Orange Zone: Moderate threat level
- Yellow Zone: Low threat level
potential hazardous materials incidents due to derailment or other causes. In addition, along major arterial roadways and highways throughout the coastal areas of Contra Costa County. It is also important to note that the rail lines that act as ad hoc flood protection
could result in more significant flooding in surrounding areas due to overtopping effects. Each of the pinch points discussed in the CRA are located along or adjacent to railroad discussed above in Sections 4.1.1 through 4.1.7.

4.1.9 Roadways

As discussed above in Section 4.1.8, disruption of commercial rail traffic could result in increased commodity flow via trucks along various arterial roads and highways in the
vicinity of the pinch points. This also results in a higher risk of a hazardous materials incident occurring along the roadways. In addition, inundation of the areas of the pinch also affect the ability to move commercial goods via roadways.

In consideration of transporting hazardous materials via rail, primarily within rail tanker cars, it should be noted that one tanker car can generally contain 2 to 3 times the amount
of commodity than one tanker truck. This will put significant pressure on trucking commodities through neighborhoods of vulnerable populations and critical facilities. It is
also possible that highway transport may not be a viable option in areas of flooding, as also possible that highway transport may not be
the roadways themselves may also be closed.

Any increase in trucking of hazardous materials though vulnerable neighborhoods will increase the potential for hazardous materials incidents to occur. Due to the stress placed
on the roadways, and the potential for less-than-ideal road conditions during flooding activities, the increase in highway related hazardous materials transportation incidents
may be additionally increased.

Based on the comparison of the amount of trucks that would be required to transport speciric hazardous materials, such as sulfuric acid, which would normally be transported dependent basis. Unless, materials can be transported on still-operating rail lines or
through the ports, then the additional stress in highway transport will be significant. In the
 me maior arterial roads and highways, which could be subject to increased truck traffic, The major arterial roads and highways, which could be subject to increased truck traffic,
including increased hazardous materials transport for each of the pinch points are as follows:

Hazardous Materlals Commodify Flow Study with Contra Costa County, Callifornia August 2019

The following information was also utilized in the preparation of the plume maps:

- Assumed weather conditions at the time of release;

Identity and amount of chemical released;
The amount of the chemical entering the vapor phase (air);
Location of the release; and
Time and date of release.
4.2.1 Background Plume Analysis Parameters

The following information was obtained from the National Oceanic and Atmospheric Administration (NOAA), Office of Response and Rest
of Concem (LOCs), which are available on line at: $\mathrm{https://fresponse.restoration.noaa,gov/o}$
spills/resourcesilevels-concem.html

A Toxic LOC will deternine what level (threshold concentration) of inhalation exposure to a chemical would be injurious if inhaled over a defined length of time (exposure duration).
In general, the lower the Toxic LOC value, the more toxic the substance is by inhalation. ALOHA (Areal Locations of Hazardous Atmospheres) is used for emergency response or planning situations to assess the threat posed to the general public by a chemical release. would be affected if they are exposed to a particular hazardous chemical in an emergency

ALOHA preferentially uses Acute Exposure Guideline Levels (AEGLs), as they are considered to be the best public exposure Toxic LOCs. As of mid-2016, AEGLs had been
finalized for about 175 chemicals. ALOHA uses only the AEGL values for a 60 -minute finalized for about

AEGLs are subdivided into 3 tiers which corespond to specific health effects. The AEGL tiers and their corresponding threat levels are as follows:

AEGL-3: Red Threat Zone Level
AEGL-2: Orange Threat Zone Level
AEGL-1: Yellow Threat Zone Level
A more detailed discussion of the AEGLs is copied from the NOAA data at $\frac{\text { hitos:i/response.restoration.noaa.qovioil-and-chemical-spills/chemical- }}{\text { spills/resources/acute-exposure-quideline-levels-aegls.html as follows. }}$
Hazardous Materials Commodity Flow Study with
August 2019
TAIT Environmental Services, inc.
AEGLs for ammonia, propane, and sulfuric acid as determined by the NOAA are as
follows.
Ammonia

	$7664-41-7$	(Final)			
ppm	10 min	30 min	60 min	$\mathbf{4} \mathbf{h r}$	$\mathbf{8} \mathbf{h r}$
AEGL 1	30	30	30	30	30
AEGL 2	220	220	160	110	110
AEGL 3	2,700	1,600	1,100	550	390

AEGL $2-10 \mathrm{~min} / 30 \mathrm{~min} / 60 \mathrm{~min} / 4 \mathrm{~h} / 8 \mathrm{hr}=\cdots 17,000 \mathrm{ppm}$
For values denoted as* ssfety considerations against the hazard(s) of explosion(s) must be taken into account.

Hazardous Materials Commodity Flow Study with Contra Costa County, Calforla
August 2019
TAIT Environmental Services, Inc.
4.3 Ammonia Gas Summary

The release scenarios outlined above in Section 4.2 are considered to be a worst-case

 release of a toxic cloud of liquefied ammonia from the pressurized tanks directly to the
atmosphere. The ammonia quickly combines with moisture in the air, vaporizes, and forms a
toxic cloud migrating downwind from the source.
 Information conceming the characteristics of ammonia and anhydrous ammonia and the migration of an ammonionia gas cloud is well represented in the literature, and the general

Centers for Disease Control and Prevention (CDC), Ammonia Solution (UN3318): Ammonia, Anhydrous (UN1005): Lung Darmaging Agent, on line at
https://ww.cdc.9ov/niosh/ershdblemergencyresponsecard 29750013.html.

United States Department of Labor, 2018, Ammonia Refrigeration Emergency Response, https://www.osha.gov/SLTC/etools/ammonia refrigeration/emergencylindex.html.

United States Department of Labor, 2018, Ammonia Refrigeration Properties of Ammonia, on line at
NOTE THAT VALUES ARE RN me/m³. HOT ppm.

Sulfurle acld			7664-93-9 (Interim)		
	10 mm	30 mm	50 min	4 hr	\% hr
(mm/m³) 12/30/06					
AEGLI	$0.20 \mathrm{mg} / \mathrm{m}^{3}$	$0.20 \mathrm{mg} / \mathrm{m}^{2}$	$0.20 \mathrm{mg} / \mathrm{m}^{3}$	$0.20 \mathrm{mg} / \mathrm{m}^{3}$	$0.20 \mathrm{mg} / \mathrm{m}^{3}$
AEGL2	8.7 mg/m ${ }^{3}$	$8.7 \mathrm{mg} / \mathrm{m}^{3}$	$8.7 \mathrm{mg} / \mathrm{m}^{3}$	$8.7 \mathrm{mg} / \mathrm{m}^{3}$	$5.7 \mathrm{mg} / \mathrm{m}^{3}$
AEGL 3	$270 \mathrm{mg}^{\text {fm }}{ }^{3}$	$200 \mathrm{mg} / \mathrm{m}^{3}$	$160 \mathrm{mg} / \mathrm{m}^{3}$	$110 \mathrm{mg} / \mathrm{m}^{3}$	$93 \mathrm{mg} / \mathrm{m}^{3}$

IMPORTANT NOTE: Interim AEGLs are esteblished following review and consideration by the Netional Advisory Committee for AEGL:
(MAC/AEGLL of public comments on Procosed AEGLs, Interim AEGLs are available for use by organizations while awaiting NRC/MAS peer (MAC/AEGL) of public comments on Proposed AEGLs. Interim AEGL s are avilable for use by organizations while awaiting NRC/MAS peer
review and publication of final AEGLs. Changes to tnterim values and Technleal Support Documents may occur ppior to publention of
Finat AEGL values. Io some cases, rexised interim values may be posted on tlis Web site, but the revised Interim Technical Sugport Finat AEGL values. in some cases, revised interim values may be posted on tivis Web site, but the revised interim
Document lor the chemical may be subject to change. (Fu.ther information is aveilable through AEGL Precess).

[^0]4.2.3 Basis for Plume Analysis

> Hazardous Materials Commodity Flow Study with Contra Costa County, Callformia August 2019
TAIT Environmental Services, inc.
 Ammonia/anhydrous ammonia is one of the highest production chemicals in the United States. It is used in manufacturing, reffigeration, and as an agricitural fertitizer, and in
common in housenold chemicals. Ammonia can be absorbed into the body by inhalation, ingestion, and by bsin and eye contact. A Apoisonous and visibte vapor clood in in producuced
inhen ammonia comes in contact with water. Ammonia is extremely corrosive, and when it when ammonia comes in contact with water. Ammonia is extremely corrosive, and when it
mixes with air if forms an explosive mixture. Although anhydrous ammonia is classified by
the U.S Department of Transportation (USDOT) as nonflammable, ammonia vapor is the U.S Department of Transportation (USDOT) as nonfla
flammable at concentrations of 15% to 28% by volume of air.

$$
\begin{aligned}
& \text { The odor threshold for ammonia is between } 5 \text { and } 50 \text { parts per million (ppm) of air, and the } \\
& \text { permissible exposure limit (PEL) is } 50 \mathrm{ppm} \text { over an 8-hour time period. The USDOT }
\end{aligned}
$$ pummarizes the properties of ammonia as follows:

Emergency response to an ame below.
document and is summarized ber

- Red Zone: (generally corresponds to Red Zone of ALOHA plume designation): Personal Protective Equipment (PPE) in Level A or Level B should be used. In
zone, the exposure to chemical hazards, is above IDLH or greater than AEGL-2.
Hazardous Materlals Commodity Flow Study with
Special Focus on Sea Level RIse and Flood Risk
Contra Costa County, California August 2019
TAIT Environmental Services, Inc.
4.4 Propane Summary
The release scenarios outlined above in Section 4.2 are considered to be a worst-case scenario in the case of a rall tank car holding 34,397 gallons of liquefied petroleum gas
(propane) that has ruptured due to derailment due to flooding along the railroad or other cause. This has resulted in the release of the contents of the tank car to the environment.

Information conceming the characteristics of propane and the mitigation of a propane release
incident are summarized here, and the data were obtained from the following references: Alternative Fuels Data Center, Propane Production and Distribution, U.S. Department of
Energy, 2019, on line at https://afdc.energy.gov/fuels/propane production.html.
Linde, Industrial Gases, Propane, 2019, on line at https://www.linde-
gas.com/en/products and supply/Rases fuel/propane.html.

[^1]Hazardous Maternals Commodity Flow Study with Contra Costa County, Callfornla
August 2019
TAIT Environmental Services, inc

[^2]

The railroad Standard Transportation Commodity Code (STCC) for propane is 2912111. The summary of the physical properties of 93% sulfuric acid is reproduced from the Ferrellgas
SDS and is as follows:
Hazardous Materials Commodity Flow Study with
Special Focus on Sea Level Rise and Flood Risk
Contra Costa County, Californla
August 2019
TAIT Environmental Services, Inc.
U. S. Department of Transportation, 2016 Emergency Response Guidebook.
Propane is a by-product of natural gas processing and crude oil refining and is produced from Propane is components recovered during natural gas processing. Propane is a colorless, highly Propane is used as a vehicle fuel, as well as for industrial and domestic heating. It is also a Propane is used as a venicle fuel, as well as for industrial and dom
specialty gas employed as a refrigerant and an aerosol propellant.
Propane production has increased over the last several years, and shipments by rail attained
more than 75,000 thousand barrels in 2018 as shown below in the U.S. Energy Information more than 75,000 thousand barrels in 2018 as shown below in the U.S. Energy Information
U.S. Propane by Rail Thousand Barrels
100,000
100,000
75.000

[^3]
Hazardous Materials Commodily Flow Study with
Speclal Focus on Seae Levee Rise and Flood Risk
Contrac osta County Callfomia
August 2019
TAiTT Environmental Services, Inc.
Sulfuric acid is one of the most important compounds manufactured by the chemical industry and is used to make hundreds of other compounds needed by other industries. Sulfuric acid
is used widely in the manufacture of phosphoric acid in the fertilizer industry., as well as in the metal processing industry. Anual production of sulfuric acid in the United States is
$37,00,000$ metric tones. Uses of sulfuric acid are shown in the following diagram, which
Cing prouacoalio.

Sulfuric acid is a highty corrosive material, and is identified under United Nations (UN) Guide
in the Department of Transport Emergency Response Guidebook (ERG) as No. 1830. The details from the J.R. Simplot Safety Data Sheet (SDS) are shown below:

> UN1830 Sulturic acid, 8, It UN1830
UN1830 II - Medium Danger
Evacuation guidelines are contained with the ERG, and the isolation distance in the event that
a fire is involved is $1 / 2$ mile in all directions. The response guidelines in the
below. Although there is no stated isolation distance in the event of a sulfuric acid spill, or a a

Hazardous Materials Commodity Flow Study with Contra Costa County, Callfomia
TAIT Environmental Services, Inc.
5.0 Chemical Plume Analysis

This section contains plume analysis for Toxic LOCs for the COCs ammonia, propane, and sulfuric acid based on the input of specific parameters, as outined above in Sectionationd noted above, these parameters have been determined to illustrate a worst-case scenario and/or
probabbe scenario witt respect to a major release of the Cocs within Contra Costa County. As
ALOHA data input requires a date input, the arbitrary date of July 18 is used.

The plume diagrams produced using the ALOHA modeling program for the 5 determined pinch points located within coastal area of Contra Costa County, and they are described in the following sections. In each section, the basis of the ALOHA plume maps are presented with the following
summary data: summary data:

- Text Summan: the text summary describes the parameters under which the plume data were prepared. This includes: - Chemical Datat for the specifif chemical (in this case chlorine or ammonia), including AEGL-1, AEGL-2 and AEGL-3 (60 minutes), other speciific conemical charactenstics,
and the Almmediately Dangerous to Life and Health (IDLH) concentration. - Atmospheric Data derived from the weather data for Contra Costa County for July.
The prevailing wind direction for 10 months of the year (February through November) is from the west, and this direction will be used in the ALOHA modeling.
Source Strength, including quantity spilled/released into the atmosphere and Conditions under which it was released.
Threat Zone, which defines the red, orange, and yellow threat zones.
- Toxic Threat Zone: This is a schematic of the plume size and shape with a summary of

Release Rate: This is a graph of the data contained in the text portion under Source Strength.

- Plume Diagram: The plume diagram is superimposed on a Google Earth base. The 3
threat zones (red, orange, and yellow) are shown, as are the critical facilities receptors. Site-specific parameters were applied to the plume modeling mapping discussed for each of the
5 pinch points in Sections 5.1 through 5.5 .

Ammonia/Anhydrous Ammonia: ALOHA model plume mapping of an ammonia/anhydrous used in plume development include:

- Incident occurs in mid-July with an intemal tank temperature of $85^{\circ} \mathrm{F}$;

Wind is from the west at nine (9) miles per hour
Size of railroad tank care is 34,397 gallons;
Tank diameter of 10.66 feet;
spill into water, the ERG guidelines with respect to fire should be used as a basis for
evacuation and mitigation.

Hazardous Materials Commodity Flow Study with Contra Costa County, Califria
 August 2019 TAIT Environmental Services, inc.

The rupture in the tank car is a 10 -inch diameter hole located near the bottom of the tank
Detailed parameters
Propane: ALOHA model plume mapping for a propane (UN ID\# 1075) release is shown in the following maps. The first map in each section shows the extent of a propane plume release. The Some of the major parameters used in plume development include:

Incident occurs in mid-July with an air temperature of $85^{\circ} \mathrm{F}$; Wind is from the west at 9 miles per hour;

Wind is from the west at 9 miles per hour;
Size of railroad tank care is 34,397 gallons;
Tank diameter of 10.66 feet; and
The rupture in the tank car is a 10 -inch diameter hole located near the bottom of the tank car.

Detailed parameters are contained in Appendix C. Critical facilities within the plume are also
shown on the maps.
Sulfuric Acid: Sulfuric acid is not considered a toxic material that will create a toxic vapor plume during a release. Nevertheless, it but can form a gray cloud, and when this cloud mixes with water vapor to form a white cloud, it is heavier than air. The mixing of sulfuric acid with water flooding event is a realistic scenario in the coastal areas of Contra Costa County. Sulfuric acid
can be neutralized with soda ash or lime.

Evacuation guidelines are contained with the ERG, and the isolation distance in the event that a fire is involved is $1 / 2$ mile in all directions. Although there is no stated isolation distance in the event as a basis for evacuation and mitigation.

Some of the major parameters used development of the isolation distance map for sulfuric acid
at each of the 5 pinch points are as follows:

Incident occurs in mid-July with an internal tank temperature of $85^{\circ} \mathrm{F}$;

Size of railroad tank care is 13,350 gallons;
Tank diameter of eight (8) feet; and
The rupture in the tank car is a 10 -inch diameter hole located near the bottom of the tank
car.
Critical facilities within the plume are also shown on the maps.
Hazardous Materials Commodity Flow Study with
Speclal Focus on Sea Level Rise and Flood Risk
Contra Costa County, Callfonia
August 2019
TAlT Environmental Services, inc.

5.1.1 Scenario 1: Ammonia
ALOHA model plume mapping at Pinch Point Richmond \#1 for an ammonia/anhydrous

 is either industrial or part of San Francisco Bay.

ALOHA model plume mapping at Pinch Point Richmond \#1 for propane (UN ID\# 1075)
release is shown in the following maps. The first map shows the extent of a propane plume
release. The second map shows the area affected in the event that the tank car explodes
in a BLEVE scenario.
The propane plume is approximately 1 mile long and up to $1 / 2$ mile wide. The Red Threat
Zone is approximately $1 / 2$ mile long and up to $1 / 4$ mile wide. The entire plume covers a
portion of the residential area of east Richmond and EI Cerrito. Although the prevailing
wind direction is from the west, seasonal variations result in the wind direction coming
from the north. This will place a limited area southeast and south at risk from propane
incident release. Areas to the southeast are also residential. Much of the area to the
south is primarily industrial.
The second map shows the propane BLEVE scenario. In this scenario the area affected
is known as the Thermal Radiation Threat Zone and is approximately $3 / 4$ mile from the
source, and the Red Threat Zone extends approximately $1 / 4$ mile from the source. In
general, areas to the northwest, north, east, and southeast are primarily residential; areas
to the west and south are industrial.

Hazardous Materals Commoolity Flow Study with The sulfuric acid (UN ID \#1830) release isolation zone at Pinch Point Richmond \#1 is
shown in the following map. According to ERG guidelines, the isolation distance in the show that a fire is involved is $1 / 2$ mile in all directions. Although slightly less extensive in area, the isolation zone is similar to the Propane BLEVE scenario. In general, areas to
the northwest, north, east, and southeast are primarily residential; areas to the west and

ALOHA model plume mapping at Pinch Point Richmond \#2 for propane (UN ID\# 1075)
 in a BLEVE scenario.
The propane plume is approximately 1 mile long and up to $1 / 2$ mile wide. The Red Threat
Zone is approximately $1 / 2$ mile long and up to $1 / 4$ mile wide. The entire plume covers a portion of the commercial and residential area of Richmond, including the downtown area. wind direction coming from the north. This will place a limited area southeast and south at risk from a propane incident. Areas to the southeast are also residential. Much of the
area to the south is primarily industrial.
The second map shows the Propane BLEVE scenario. In this scenario the area affected
is known as the Thermal Radiation Threat Zone and is approximately $3 / 4$ mile from the source, and the Red Threat Zone extends approximately $1 / /$ mile from the source. In general, areas to the northeast, east, and southeast are prim
residential; areas to the northwest, west, and south are industrial.
The sulfuric acid (UN ID \#1830) release isolation zone at Pinch Point Richmond \#2 is shown in the forlowing map. According to ERG guidelines, the isolation distance in ine
event that a fire is involved is $1 / 2$ mile in all directions. Although slightly less extensive in area, the isolation zone is similar to the Propane BLEVE scenario. In general, areas to
the northeast and east are primarily residential; areas to the west and south are industrial.

Hazardous Materlals Commodity Flow Study with Contra Costa County, California Agust 2019
 $$
\begin{aligned} & \text { Ail Environmental Services, Inc. } \\ & \text { lugut } \\ & \text { Ant } \end{aligned}
$$
 5.3 Pinch Point - Martinez \#3

 propane as LPG (worst-case scenario), and 13,350 galions of
scenario). The individual details are contained in the sections below.

Hazardous Materials Commodity Flow Study with Contra Costa County, Callformia August 2019

ALOHA model plume mapping at Pinch Point Martinez \#3 for propane (UN ID\# 1075)
release is shown in the following maps. The first map shows the extent of a propane plume
release. The second map shows the area affected in the event that the tank car explodes
in a BLEVE scenario.
The propane plume is approximately 1 mile long and up to $1 / 2$ mile wide. The Red Threat
Zone is approximately $1 / 2$ mile long and up to $1 / 4$ mile wide. The entire plume covers a
portion of the industrial area in the northeastem part of Martinez. Although the prevailing
wind direction is from the west, seasonal variations result in the wind direction coming
from the north. This will place the industrial area south of the pinch point at risk from a
propane incident.
The second map shows the Propane BLEVE scenario. In this scenario the area affected
is known as the Thermal Radiation Threat Zone and is approximately $3 / /$ mile from the
source, and the Red Threat Zone extends approximately $1 / 4$ mile from the source. The
entire area affected by this scenario is industrial, including oil refineries.

5.3.2 Scenario 2: Propane

ALOHA model plume mapping at Pinch Point Martinez \#3 for propane (UN ID\# 1075)

Th from the north. Th

[^4]
Hazardous Materials Commodity Flow Study with Special Focus on Sea Level Rise and Flood Risk Contra Costa County, Callfomia Angust 2019 TAIT Environmental Services, inc.

5.3.3 Scenario 3: Sulfuric Acid
Hazardous Materials Commodity Flow Study with Contra Costa County, Califormla

ส

5.4.2 Scenario 2: Propane

ALOHA model plume mapping at Pinch Point Bay Point \#4 for propane (UN ID\# 1075) release is shown in the following maps. The first map shows the extent of a propane plume release. The second
The propane plume is approximately 1 mile long and up to $1 / 2$ mile wide. The Red Threat Zone is approximately $1 / 2$ mile long and up to $1 / 4$ mile wide. The entire plume covers the wind direction is from the west, seasonal variations result in the wind direction coming from a propane incident. Areas beyond this zone to the southeast are residential. The second map shows the Propane BLEVE scenario. In this scenario the area affected
is known as the Thermal Radiation Threat Zone and is approximately $3 / 4$ mile from the source, and the Red Threat Zone extends approximately $1 / 4$ mile from the source. In general, the entire area is either industrial, natural open lands, or part of Suisun Bay.
Areas beyond this zone to the southeast are residential.

tazardous Materials Commodity Flow Study with
Special Focus on Sea Level Rise and Flood Risk
Contra Costa County, Californla
August 2019
TAIT Environmental Services, Inc.

5.5.1 Scenario 1: Ammonia
 ammonia (UN ID\# 1005) release is shown in the following map. The ammonia plume is

 will place areas southeast and south at risk from an ammonia release. Areas
southeast are within the commercial, residential, and downtown areas of Antioch.

ALOHA model plume mapping at Pinch Point Antioch \#5 for propane (UN ID\# 107 ALOHA model plume mapping at Pinch Point Antioch \#5 for propane (UN ID\# 1075)
release is shown in the following maps. The first map shows the extent of a propane plume release. The second map shows the area affected in the event that the tank car explodes
in a BLEVE scenario.
The propane plume is approximately 1 mile long and up to $1 / 2$ mile wide. The Red Threat
Zone is approximately $1 / 2$ mile long and up to $1 / 4$ mile wide. The entire plume covers the
 prevailing wind direction is from the west, seasonal variations result in the wind direction
 The second map shows the Propane BLEVE scenario. In this scenario the area affected
is known as the Thermal Radiation Threat Zone and is approximately $3 / 4$ mile from the is known as the Thermal Radiation Threat Zone and is approximately $3 / 4$ mile from the

Hazardous Materials Commodity Flow Study with Speclal Focus on Sea Level Rise and Flood Risk Contra Costa County, Califomla August 2019 TAIT Environmental Services, Inc. 5.5.2 Scenarlo 2: Propane
 Hazardous Materlals Commodity Flow Study with Speclal Focus on Sea Level Rise and Flood Risk Contra Costa County, Califormla August 2019 TAIT Environmental Services, Inc. $$
5.5 .2 \text { Scenarlo 2: Propane }
$$

 SpeclaContra
Augus

Hazardous Materlals Commodity Flow Study with
Special Focus on Sea Level Rise and Flood Risk Special Focus on Sea Level Rise
Contra Costa County, California
August 2019 August 2019
TAIT Environmental Services, Inc.

Hazardous Materials Commodity Flow Study with
Special Focus on Sea Level Rise and Flood Risk
Contra Costa County, Californla
August 2019
TAIT Environmental Services, Inc.
\qquad

Latmenatulo Aunuwioy

\$5u.p ng kivmog pulf it)

The sulfuric acid (UN ID \#1830) release isolation zone at Pinch Point Antioch \#5 is shown in the following map. According to ERG guidelines, the isolation distance in the event thal
a fire is involved is $\bar{y} / 2$ mile in all directions. Although slightly less extensive in area, the isolation zone is similar to the Propane BLEVE scenario. The entire isolation zone in
industrial and natural open land areas, including part of Suisun Bay.

6.0 Integration of Data with GIS

Following this Flow Study, CCHSHMP will be working to display hazardous materials related data, along with sea level rise and flood data, in a GIS format. GIS mapping will be used to further
communicate, display, and identify areas of concern as it relates to hazardous materials and flooding.

Hazardous Materials Commoodity Flow Study with Special Focus on Sea Level Iise and Flood Rlsk August 2019 TAit Environmental Services, inc.

should be similar to an ammonia release; however, evacuation may not be necessary depending upon the circumstances. The most important aspect of immediate response to a propane or
sulfuric acid release is to allow properly equipped and trained first responder to proactively mitigatefteminate the source of the incident. Flooding in the release area may complicate the
response actions. response actions.

The locations of the natural gas transmission pipelines and hazardous liquid pipelines within the coastal areas of Contra Costa County are known, and the major lines are often collocated along
the railirad lines, particularly in the coastal areas. In order to mitigate any negative results due to a release incident along the pipelines, the first responders should coordinate with the pipeline peraiors io im mediately islate he affected lines. Isolation wili ensure that a minimal amount of
the population is affected by the incident. In addition, evacuation procedures should be in place
to quickly and efficiently remove the affected populations from the areas impacted by the incident.

The vulnerable populations within and adjacent to each of the 5 pinch point locations are at high risk in the event of a major hazardous materials incident. Because of this situation, a proactive
approach to initial response by first responders, is the best approach, as it reduces the need for an overarching reactive response. There are 3 elements to this approach:

- Proper protective and response equipment, which will allow first responders to react - proactively, quickly, and efficienty to a major hazardous materials release incident. - Mutual aid agreements with local, and state agencies that can immediately provide additional manpow
release incident.

A proactive approach in equipping and training first responders will serve to protect the vulnerable populations within the county in the event of a transportation-related hazardous material
accidentincident. This approach will also minimize disuption of essential services, faciities, and infrastucture, and will uttimately save lives and property.

Hazardous Materials Commodity, Flow Study with Contra Costa County, Callfornia August 2019

Pipeline data, including identification and locations of hazardous liquid and gas transmission pipelines were also included as a reference in this report. In many areas, including the coastal
areas, the pipelines are often co-located with the railroad lines. An incident along one of these transportation routes could potentially affe
listed and located on the pipeline maps.

Railroads in Contra Costa County consist primarily of the following rairroad lines: UP, BNSF,
RPRC, and BART. UP and BNSF transport the majorty of commercial trafic, including hazardous RPRC, and BART. UP and BNSF transport the majority of commercial traffic, including hazardous shorelines serve as a first line of defense against inland flooding, also known as ad hoc flood
protection. Disruption of rail line transportation can have significant impacts on the movement of goods through Contra Costa County, particularly altemate transportation along roadways. In the event of flooding due to rising tides, the stability of the rail lines in some areas (ballast and track bed materials) may be at risk of becoming structurally unsound. In addition, groundwater table
rise due to climate change could also result in the instability of the rail lines due to the potential damage to track bed and ballast materials. Certain areas of the rail lines are in areas at risk of
high to very high liquefaction in the event of an earthquake.

Rairoad incidents involving hazardous materials were reviewed from the time period of 2000
through 2019. A review of the above data indicates the following trends:

- Major cause of total rail incidents is derailment;

Major causes of hazardous materials spill incidents are derailment, leaking train cars, and
Both UP and BNSF lines contained the major portion of the total rail incidents, as these are the major rail lines in the area;

Total rail incidents were located primarily in the cities of Richmond, Martinez, Pittsburg, Hazardous materials spill incidents were located primarily in Richmond, Martinez, Rodeo, and Crockett.

Information concerning highway and roadway incidents was limited, but some Contra Costa County data were available from the period of 2010 through 2019, and nationwide data were
available from 2010 through 2016 . The nationwide data indicated that the number of hazardous materials incidents occurs in about 12 to 14 times per 10,000 total truck trips. These numbers
can be extrapolated to Contra Costa County, although there may be an increase in the frequency/rate of the incidents due to the following:

High traffic volumes in a heavily populated urban area;
Increased frequency of transportation of hazardous materials along arterial roadways; and
Increased number of incidents because of flooding due to rising tides. Increased number of incidents because of flooding due to rising tides.

Disruption of comrnercial rail raffic could result in increased commodity flow via trucks along
various arterial roads and highways in the vicinity of the pinch points. This also results in a higher various arterial roads and highways in the vicinity of the pinch points. This also results in a higher
risk of a hazardous materials incident occurring along the roadways. In addition, inundation of

Hazardous Materials Commodity Flow Study with Contra Costa County, California August 2019

he areas of the pinch points by water, due to rising tides or disruption of rail traffic due to seismic he areas of the pinch points by water, due to rising tides or disruption ourdays.
events could also affect the ability to move commercial goods via roadways.

In consideration of transporting hazardous materials via rail, primarily within rail tanker cars, it

 transported by rail would be dependent on the amount of rail cars that would be disrupted on a

The 5 pinch points were determined during this study for extended analysis in the event that a
hazardous materials incident/accident occurred at these locations. The pinch points, which are all positioned along railroad lines, were located as follows:

- Richmond \#1: 1-580 at Meade Street
- May Point \#4: Nichols Road North of Port Chicago Highway Antioch \#5: End of Arcy Lane

The determination of the pinch points was dependent in part on the following parameters, which
were used to perform the CRA:

- Rising Tides data and areas most susceptible to rising tides and sea level rise; Liquefaction Susceptibility data;
- Location of CalARP Facillites;
- Locations of Critical Facil
- Weather data;
- Critical Arterial Road Locations.

A critical aspect of the determination of pinch points is an analysis of flooding due to rising tides
and sea level rise, including king tides and storm surges. Data was compiled using the ART
Shoreline Flood Explorer on-line maps for three different scenarios:

- 12-Inch Sea Level Rise, Equivalent to King Tide with no Sea Level Rise;
- 24-inch Sea Level Rise, Equivalent to 5 -Year Storm Surge with no Sea Level Rise; and

Hazardous Materlals Commodity Flow Study with

TAiT Environmental Services, inc.
For purposes of the CRA, only the 12 -inch Sea Level Rise, equivalent to a King Tide with no Sea
Level Rise was used in the Chemical Plume Analysis section of this report. As a note, levee failure was not included as a potential flood scenario in this

The California Healthy Places Index (HPI) was used as an aid to determine more vulnerable populations for the Community Rexk Assessment, including areas of lower income residential
pore development. Various HPI indicators and decision support layers were used to determine the
HPI into the following categories ranging from "less" to "more" healthy conditions: 0-25 (least);

- $50-75$; or

Large areas of high to very high susceptibility to liquefaction during a seismic event are located in the coastal areas of Contra costa County. Liquefaction occurs where saturated sand and silt areas are considered to be vulnerable to disruption of rail and road traffic, as a result of an incident during an earthquake.

Locations of CaIARP facilities aided in the determination of the pinch points, as hazardous
chemical from some of the CaIARP sites were transported through the area along the railroads and roadways. Some of the CalARP facilities are considered to be critical operating facilities, as
they include water treatment and energy generation /transfer facilities, as well as large economic they include water treatment and energy generation/transfer facilities, as well as large economic
centers. centers.

The locations of critical facilities were used as an aid in determining the locations of the pinch points. Many of these facilities are relevant to other hazards than the release of hazardous
materials. As a result, and for the purposes of this CRA, critical facilities will refer to facilities that may contain vulnerable or essential emergency populations that will require mitigation/evacuation

Critical facilities located in the coastal areas of Contra Costa County can be summarized as

- City, County, Federal Buildings

Hospitals and Emvalescent Homes
Nursing and Convalescent Ho
Community Centers/Shelters
Schools
Based on the Flow Study data from the railroads, it was determined that the following 3 chemicals of concern would be used in the Chemical Plume Analysis in the CRA portion of this study to
cover worst-case scenario situations at the pinch points in the event of a hazardous materials
incidentlaccident :

Hazardous Materials Commodity Flow Study with Speclal Focus on Sea Level RIse and Flood RIsk Contra Costa County, Callomia August 2019
 tait Environmental Services, inc.

County; and Suffuric acid: commonly transported along the railroads in Contra Costa County. Weather for the coastal regions of Contra Costa County was available for several cities within the County. For the most part, weather patterns for the coastal cities are very similar. This component of toxic plume analysis, as it determines the direction which the plume will travel over
 utilized in this report covered an incident occurring in July.
Each of the pinch points discussed in the CRA are located along or adjacent to rairoad lines. These locations are considered to be higher risk. Many of the rail lines are co-located with
 liquefaction which could be caused by earthquake events. Rail lines in these areas could become compromised, resulting in potential hazardous materials incidents due to derailment or other
causes. In addition, disruption of commercial rail traffic could result in significant increases in commodity flow along major arterial roadways and highways throughout the coastal areas of Contra Costa County. It is also important to note that the rail lines that act as ad hoc flood
protection could result in more significant flooding in surrounding areas due to overtopping effects. Plume diagrams for release of hazardous materials from the pinch points were determined using

 as Google Earth.
The plume diagrams are utilized in determining the extent of threat zones based on the release
of a particular chemical. Three threat zones were mapped for each chemical release:

> Red zone: Highest threat level - Orange Zone: Moderate threat level - Yellow Zone: Low threat level
Chemical Plume Analysis for the CRA was based on the following general parameters:

- Weather conditions;
Ammonia/anhydrous ammonia is one of the highest production chemicals in the United States. It
is used in manufacturing, refrigeration, and as an agricultural fertilizer, and is common in
household chemicals. Ammonia can be absorbed into the body by inhalation, ingestion, and by

Hazardous Materials Commodity Flow Study with Augtra Costa County, California TAIT Environmental Services, Inc

The ammonia plume is extensive and is over 6 miles long and up to 2 miles wide. The Red Threat Zone is approximately 2 miles long and up to a mile wide.

The propane plume is approximately 1 mile long and up to $1 / 2$ mile wide. The Red Threat Zone is approximately $1 / 2$ mile long and up to $1 / 4$ mile wide. In the BLEVE scenario, the area affected is
known as the Thermal Radiation Threat Zone and is approximately $3 / 4$ mile from the source, and the Red Threat Zone extends approximately $1 / 4$ mile from the source.

Sulfuric acid is not considered a toxic material that will create a toxic vapor plume during a release,
and the ALOHA modeling program could not be used for this chemical. Although there is no and the ALOHA modeling program could not be used for this chemical. Although there is no
stated isolation distance in the event of a sulfuric acid spill, or a spill into water, the ERG guidelines with respect to fire were used as a basis for evacuation and mitigation. Some of the major points are as follows:

$$
\begin{aligned}
& \text { - Incident occurs in mid-July with an intemal tank temperature of } 85^{\circ} \text { F; } \\
& \text {. Size of railroad tank care is } 13.350 \text { aallons }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Size of railroars it mid mid-July with an internal ta } \\
& \text { Tank diameter of } 8 \text { feet; } 13,350 \text { gallons; } \\
& \text { The }
\end{aligned}
$$

- The rupture in the tank car is a 10 -inch diameter hole located near the bottom of the tank
car.
Pinch Point Richmond \#1

Pinch Point Richmond \#1 is located along a major north-south rail corridor in the city of Richmond. Most of the cirtical faciilties for Pinch Point Richmond \#1 are located east of the
pinch point, which is equivalent to the prevailing downwind direction. Much of this area is in commercial and residential land use. Most of the area west and southwest of the pinch point

The ammonia plume is extensive and is over 6 miles long and up to 2 miles wide. The Red
Threat Zone for the ammonia plume is approximately 2 miles long and up to a mile wide and Threat Zone for the ammonia plume is approximately 2 miles long and up to a mile wide and
covers a significant portion of the residential and commercial areas of east Richmond and El Cerrito. Although the prevailing wind direction is from the west, seasonal variations result in hrem an ammonia release. Areas to the southeast are also residentiant and commerial. Much
of the area to the south is either industial or of the area to the south is either industrial or part of San Francisco Bay.

The entire propane plume covers a portion of the residential area of east Richmond and EI
Cerrito. Although the prevailing wind direction is from the west seasonal Cereito. Althought the prevailing wind direction is from the west, seasonal variations result in
the wind direction coming from the north. This will place a limited area southeast and south the wind direction coming from the north. This will place a limited area southeast and south
at risk from propane incident release. Areas to the southeast are also residential. Much of
the area to the south is primarily industrial

Under the propane BLEVE scenario, the Thermal Radiation Threat Zone and is approximately / mile from the source, and the Red Threat Zone extends approximately $1 / 1$ mile from the areas to the west and south are industrial.

Hazardous Materials Commodity Flow Study with

The sulfuric acid release isolation zone, although slightly less extensive in area, is similiar to The suffuric acid release isolation zone, although sighty less extensive in area, Is shar
the propane BLEVE scenaro. In general. areas to the northwest, north, east, and southeast
are primarily residential; areas to the west and south are industrial.

Pinch Point Richmond \#2

Pinch Point Richmond \#2 is located along a major north-south rail corridor and rail siding in the city of Richmond. Most of the cirtical facilities for Pinch Point Richmond \#2 are located
east of the pinch point, which is equivalent to the prevailing downwind direction. Much of this east of the pinch point, which is equivalent to the prevailing downwind direction. Much of this
area is in commercial and residential land use. Downtown Richmond is located directly east
of the pinch point. Most of the area west of the pinch point is industrial.
The ammonia plume is extensive and is over 6 miles long and up to 2 miles wide. The Red Threat Zone for the ammonia plume is approximately 2 miles long and up to a mile wide and
covers a significant portion of the residential and commercial areas of the central and downtown portion of the city of Richmond. Although the prevailing wind direction is from the west, seasonal variations result in the wind direction coming from the north. This will place
areas southeast and south at risk from an ammonia release. Areas to the southeast are also residential and commercial with some industry. Much of the area to the south is either
rest industrial or part of San Francisco Bay.
The entire propane plume covers a portion of the commercial and residential area of Richmond, including the downtown area. Although the prevailing wind direction is from the
west, seasonal variations result in the wind direction coming from the north. This will place a west, seasonal variations result in the wind direction coming from the north. This will place a
limited aras southeast and south trisk from a propane incident. Areas to the southeast are
also residential. Much of the area to the also residential. Much of the area to the south is primarily industrial.
Under the propane BLEVE scenario, the Themal Radiation Threat Zone and is approximately $3 /$ mile from the source, and the Red Threat Zone extends approximately $1 /$ mile from the
source. In general, areas to the northeast, east, and southeast are primarily commercial and residential; areas to the northwest, west, and south are industrial.
The sulfuric acid release isolation zone, although slightly less extensive in area, is similar to
the propane BLEVE scenario. In general, areas to the northeast, east, and southeast are the propane BLEVE scenario. In general, areas to the northeast, east, and southeast are
primarily commercial and residential; areas to the northwest, west, and south are industrial. Pinch Point Martinez\#3
Pinch Point Martinez \#3 is located along the major UP rail line entering the Martinez area from
the coast to the west Most of the cintical facilitios for Pinch Point Martinez \#3 are loceted southwest and south. of the pinch point. Much of the area southwest of the pinch point is in commercial and residential land use and downtown Matinez is located in this direction. Most
of the area to the south of the pinch point is residential. Industrial areas, including oil of the area to the south of the pinch point is residential. Industrial areas, including oil
refineries, are located east of the pinch point, which is equivalent to the downwind direction.
Industrial areas are also located north and west of the pinch point.

[^5]
Hazardous Materials Commodity Flow Study with Special Focus on Sea Level Rise and Flood Risk Contra Costa County, Callifomia Contra Costa County, Califormia August 2019 TAIT Environmental Services, Inc.

9.0 Concluding Statement

A Commodity Flow Study was prepared from historical and currently available railroad and highway data. Based on the results of the Flow Study, 3 COCs were identified to be used in the
Community Risk Assessment portion of this report. Based on the COCs and other criteria,

 Contra Costa County.

The pinch points were used to prepare the Community Risk Assessment and chemical plume analysis to determine worst-case scenario effects of a release of the ammonia/anhydrous
ammonia, propane, and sulfuric acid, which were designated as the most critical COCs.

Based on the results of the chemical plume analysis, general emergency response procedures were outlined to allow for emergency response to a chemical release incident. Emergency
response covers proper protective and response equipment, comprehensive training for
 emergency responders, and in-place mutual agr
and pooling of emergency response resources.

The addition of the potential flooding of low-lying coastal areas of the county, including residential, commercial, and industrial areas, may serve to complicate emergency response to an incident, and additional measures may need to be implemented to adequately respond to a flooding
situation at the site of a release incident.

A proactive approach in equipping and training first responders will serve to protect the
vulneabable populations within the County in the event of a transportation-related hazardous material accident/incident. This approach will also minimize disruption
facilities, and infrastructure, and will ultimately save lives and property.

The East Contra Costa and Bay Area Wide Adapting to Rising Tides projects are still ongoing at
the time of the completion of this report. Both projects are anticipated to conclude in winter of
 uww.adaptingtorisingtides.oral.

$$
\begin{aligned}
& \stackrel{\infty}{U} \\
& \frac{0}{0} \\
& \underset{u}{u} \\
& \frac{0}{2} \\
& \frac{2}{4}
\end{aligned}
$$

APPENDIX A-1
Richmond Area Pipeline Data

RL2．SFPP，LP Non－HVL Product Pipeline LS－71；LS－89－RICH \qquad

18092
OPERATORIC 18092
L NORTH
SYSTEM NAME SFPP＿NORTH
LS－71；LS 89 －RICHMOND 8^{*}
LS－71：LS 89 － RICH^{*}
2.14

NON－HM HM PRCDUCT
Active（filled）
atrick
RIBAN
MANAGER－ENGINEERNG
（713）420－5608 patrick＿ribangkindermorgan．com 1001 LOUISIANAST
兑
\qquad

[^6] COMMODITY CATEGORY
COMMODITY DESCRIPTION INTERSTATE DESIGNATION PIPEINE STATUS CODE REVISION DATE FRP SEQUENCE NUMBER
－Category：GENERAL CONTACT
FIRST NAME
AST NAME
ITLE
Entity
PHONE
EMAIL
$\stackrel{3}{u}$
0
0
0 を長

RL5. SFPP, LP Non-HVL Product Pipeline LS-37; AMORCO-RIC	
18092	
Attribute	Value
- Category: PIPELINE ATTRIBUTES	
OPERATORID	18092
OPERATOR NAME	SFPP, LP
SYSTEM NAME	SFPP_NORTH
SUESYSTEM NAME	LS-37: AMORCO - RICHMOND 12n
PIPELINE ID	LS-37; AMORCO-RIC*
MILES	20.83
COMMMODITY CATEGORY	Non-HML Product
COMMODITY DESCRIPTION	NON HV PRODUCT
INTERSTATE DESIGNATIOM	N
PIPELINE STATUS CCOE	Active (filled)
REVISION DATE	$06 / 21 / 2018$
FRP SEQUENCE NUMBER	
- Category: GENERAL CONTACT	
FIRST NAME	PATRICK
LAST NAME	RIBAN
TITLE	MANAGER-ENGINEERING
ENTITY	
PHONE	(713) 420-5608
EMAIL	patrick_ribanekindermorgan.cem
ADDRESS	9001 LOUISIANA ST
ciry	MOUSTON
State	TX
ZIP	77002

RL4. SFPP, LP Non-HVL Product Pipeline LS-75; IMTT/TIME

18092	
Attribute	Value
- Category: PIPELINE ATTRIBUTES	
OPERATCRID	18052
OPERATOR HAME	SFPP, IP
SYSTEM NAME	SFPP_NORTH
SUBSYSTEM NAME	LS-75; MMTT/TIME - RICHMOND B/3*
PIPELINE ID	
MILES	1.85
COMMODITY CATEECRY	Non-HML Product
COMMODITY DESCRIPTION	NON HM PRODUCT
Interstate designation	Y
PIPELINE STATUS CODE	Active (filled)
REVISION DATE	0621/2018
FRP SEQUENCE NUMBER	
- Category: GENERAL CONTACT	
FIRST NAME	PATRICK
LAST NAME	RIBAN
ItTLE	MANAGER-ENGINEERING
ENTITY	
PHONE	(713) 420-5608
Emall	patrick_riban ©kindermorgen.com
ADDRESS	1001 LOUISIANA ST
CIT	HOUSTON
state	TX
2 P	77002

RL7. Phillips 66 Pipeline, LLC Non-HVL Product Pipeline 2258_35

RL6. SFPP, LP Non-HVL Product Pipeline LS-8; RICHMOND-CO

18092	
Attribute	Value
- Category: PIPELINE ATTRIBUTES	
OPERATORID	18092
OPERATOR NAME	SFPP, LP
SYSTEM NAME	SFPP_NORTH
SUBSYSTEM NAME	LS-8; RICHMOND-CONCORD ${ }^{\prime \prime}$
FIPELINEID	LS-8; RICHMOND-CO*
masles	22.42
COMMODITY CATEGORY	Non-WM Product
COMMODITY DESCRIPTION	NON HM PRODUCT
INTERSTATE DESIGNATION	Y
PIPELINE STATUS CODE	Active (filled)
REVISION DATE	062112018
FRP SEQuENCE NUMBER	
- Category: GENERAL CONTACT	
FIRST NAME	PATRICK
LASt NAME	RIBAN
titie	MANAGER-ENGINEERING
Entity	
PHONE	(713) 420.5608
Emall	patrick_ribanegkindermorgan.com
ADDRESS	1001 LOUSIANA ST
cry	houston
state	TX
ZIP	77002

RL9. Shell Pipeline Co., LP Non-HVL Product Pipeline 854529 | | |
| :--- | :--- | :--- | :--- | :--- |

RL8. SFPP, LP Non-HVL Product Pipeline LS-46/41; RICHMOND

APPENDIX A-2
 Crockett Area Pipeline Data

CL2. SFPP, LP Non-HVL Product Pipeline LS-37; AMORCO-RIC

CL3. SFPP, LP Non-HVL Product Pipeline LS-8; RICHMOND-CO

CL6. Phillips 66 Pipeline UC Non-HVL Product Pipeline 2258 _15

CL8. Nustar Terminals Operations Non-HVL Product Pipeline 775

26094	
Attribute	Value
- Category: PIPELUNE ATTRIBUTES	
OPERATORID	26094
OPERATOR NAME	NUSTAR TERMINALS OPERATIONS ...
SYSTEM NAME	SELBY PIPELINES
SUBSYSTEM NAME	SELBY P5 PIPELINE
PIPELINE ID	775
MHES	1.06
COHMMODITY CATEGORY	Non-HM Product
COMMODITY DESCRIPTION	PRODUCTS
INTERSTATE DESIGNATION	N
PIPELINE STATUS CODE	Active (filled)
REVISION DATE	06/142018
FRP SEQUENCE NLIMBER	
- Category: GENERAL CONTACT	
FIRST NAME	Kyle
LASt name	Oppliger
TITLE	VP Ferminai Operations
ENTITY	
PHONE	(800) 759-0033
EMAlL	kyle.oppligerenustarenergy.com -
ADDRESS	$19003 \mathrm{HH}-10$ West
CITY	San Antonio
state	TX
Z1P	78257

CL7. Phillips 66 Pipeline LLC Non-HVL Product Pipeline 2260_60
CL9. Phillips 66 Pipeline LLC Crude Oil Pipeline 2260 _65

31684	\bullet
Attribute	Value
- Category: PIPELINE ATTRIBUTES	
OPERATOR ID	31684
OPERATOR NAME	PHILIPS 66 PIPELINE LLC
SYSTEM NAME	JUNCTION TO RODEC REFINERY
SUBSYSTEM NAME	COALINGA PMP STARODEO REFIN...
PIPELINE ID	2260_65
MLES	2.48
COMMODITY CATEGORY	Crude Oil
COMMODITY DESCRIPTION	
INTERSTATE DESIGNATION	N
PIPELINE STATUS CODE	Active (filed)
REVIION DATE	022212018
FRP SEQUENCE NLMBER	
- Category: GENERAL CONTACT	
FIRST NAME	Todd
LAST NAME	Tullio
Tirle	Manager, DOT Compliance
ENTITY	
PHONE	(832) 765-1636
EMAIL	Todd.L.Tullicopb6.cm
ADDRESS	2331 Citywest Blvd HC-08-5320-05
CITY	Houston
State	TX
Z9	77043

ML1. Shell Pipeline Co., LP Non-HVL Product Pipeline 854214

APPENDIX A-3
Martinez Area Pipeline Data
ML2. SFPP, LP Non-HVL Product Pipeline LS-37; AMORCO-RIC

ML5. DOD Defense Energy Support; Non-HVL Product Pipeline 0064

ML4. Shell Pipeline Co., LP; Non-HVL Product Pipeline 306

31174	-
Attribute	Value
- Category: Plpeline attributes	
OPERATCR ID	31774
operator name	SHEL PIPELINE CO., LP.
SYSTEM NAME	BAY AREA PRODUCTS LINE
SUBSYSTEM NAME	306 -10IN BAY AREA PRODUCT LIN...
PIPELINE ID	306
MLEES	0.21
COMMODITY CATEGCRY	Noo-MM Product
COMMODITY DESCRIPTION	MULTIPLE PRCDUCTS
INTERSTATE DESIGNATION	N
PIPELINE STATUS CODE	Active (filled)
REVSION Date	S64512018
FRP SEQUENCE NUMBER	
- Category: GENERAL CONTACT	
FIRST NAME	Pratik
LAST NAME	Bhakta
TITLE	Regulatory Engineer
Entity	
PHONE	(932) 762-2782
Emall	pratik. bhaktag/shell.com
adoress	P. ${ }^{\text {B }}$ B 2648
CTY	Houston
State	TX
2 IP	77252

ML6．Phillips 66 Pipeline，LLC；Crude Oil Pipeline 2260＿60
ML7．Chevron Pipeline Co；Non－HVL Pipeline CAL0001

2731	
Attribute	Value
－Category：PIPELINE ATTRIBUTES	
OPERATORID	2731
OPERATOR NAME	CHEVRCN PIPE LINE CO
SYSTEM NAME	BAY AREA PIPE LINE
SUBSYSTEM NAME	EAY AREA PRODUCTS LINE（BAPL）
PIPELINE ID	CAL0001
KHIES	21.69
COMAMODITY CATEGORY	Non－HM Product
COMMODITY DESCRIPTION	GASOLINE，DIESEL ANDIOR JET
INTERSTATE DESIGNATION	N
PIPELINE STATUS CODE	Active（filled）
REVISION DATE	061122018
FRF SEQUENCE NLMBER	
－Category：GENERAL CONTACT	
FIRST NAME	Garrett
LAST NAME	Parker
TITLE	Regulatory Assurance Specialist
ENTITY	
PHONE	（832）854－4596
Email	PARKERG＠chevron．cm
ADDRESS	1500 Lousiana
CITY	Houston
STATE	TX
2 P	77002

4084
Atribute Value
－Category：PIPELINE ATTRIBUTES
OPERATORID 31684
OPERATOR NAME PHILLIPS 66 PIPELINE LLC
SYSTEM NAME JUNCTION TO RODEO REFINERY
SUBSYSTEM NAME COALINGA PMP STARODEO REFIN．
PIPELINEID
总
5
5
娄
3
3
Active（filled）
922220018
Todd
Manager，DOT Compliarce
（832）765－1636
Todd．LTulio．p66．com
2331 Citywest Elvd HO－08－S820005
等 FRP SEQUENCE N
－Category：GENERAL CONTACT
FiRST NAME
LASTMAME
ENTITY
EMAL
ADCRESS
㝕悹
ML9. Phillips 66 Pipeline, LLC; Non-HVL Pipeline 2234_615

MLE. SFPP, LP; Non-HVL Pipeline LS-8; RICHMOND-CO
18992

Atribute Value

1 1巨92
SFPP, LP
LS-8; RICHMOND - CONCORD 8"
LS-8; RICHMOND - CO*
22.42
LS-8; RICHMOND - CONCORD 8"
LS-8; RICHMOND - CO*
22.42
Non-HVL Product ON HM PRCOUCT

Active (filled) 06121/2018 PATRICK

RIBAN
(713) 420-5608 patrick_ribangkindermergan.com 1001 LOUISIANA ST HOUSTON
TX

77002
ML11. SFPP, LP; Non-HVL Pipeline LS-72; RODEO-CONC

ML10. Shell Pipeline Co., LP; Crude Oil Pipeline 490

31174		*
Attribute	Value	
- Category: PIPELINE ATIRRBUTES		
OPERATORID	31174	
OPERATOR NAME	SHELL PIPELINE CO., L.P.	
SYSTEM NAME	VINE HILL	
SUBSYSTEM NAME	490-10IN VNE HILL CRUDE	
PIPELINE ID	450	
MILES	1.25	
COMMODITY CATEGORY	Crude Oil	
COMMODITY DESCRIPTION	CRUDE	
INTERSTATE DESIGMATION	N	
PIPELINE STATUS CODE	Active (filled)	
REVIION DATE	06/15/2018	
FRP SEQUENCE NUMBER		
- Category: GENERAL CONTACT		
FIRST NAME	Pratik	
LAST NAME	Bhakta	
TITLE	Regulatary Exgineer	
ENTITY		
PHONE	(832) 762-2782	
Emall	pratik.bhaklsêhshell.com	
ADDRESS	P.O. BCX 2648	
CITY	Houston	
STATE	TX	
ZIP	77252	

ML12. Valero Refining Co. CA; Crude Oil Pipeline TRANSBAY_20IN
ML13. SFPP, LP; Non-HVL Pipeline LS-47; (NIS) CONCOR

ML14. SFPP, LP; Non-HVL Pipeline LS-130A; CONCORD-WA

18092	- -
Attribute	Value
- Category: PIPELINE ATTRIBUTES	
OPERATORID	18092
OPERATOR NAME	SFPP, IP
SYSTEM NAME	SFPP_NORTH
SUBSYSTEM NAME	LS-130; CONCORD-SACRAMENTO...
PPPELINE ID	LS-130A; CONCORD-WA*
MILES	3.47
COMMCDITY CATEGORY	Non-HVL Product
COMMODITY DESCRIPTION	NON HM PRODUCT
INTERSTATE DESIGNATION	Y
PIPELINE Status code	Active (filled)
REVISION DATE	06/21/2018
FRP SEQUENCE NUMBER	
- Category: GENERAL CONTACT	
FIRST NAME	PATRICK
LAST NAME	RIBAN
tite	MANAGER-ENGINEERING
ENTITY	
PHONE	(713) 420-5608
EMAIL	patrick_riban@kindermorgan.com
ADDRESS	1001 LOUISIANA ST
CITY	houston
STATE	TX
ZIP	77002

ML17. Tesoro Logistics Operations; Crude Oil Pipeline 612

ML16. Tesoro Logistics Operations; Crude Oil Pipeline 611
$31874 \times$

Attribute
Attibute Vatuegory: PIPELINE ATTRIBUTES
31874
tesorologistics cperations
golden eagle
TESORO 63 CRUDE
611
COMMODITY CATEGORY CIUde OA COMMODITY DESCRIPTION interstate designation pIPELINE STATUS CODE

REVSION DATE FRP SEQUENCE NUMBER

- Category: GENERAL CONTACT

FIRST NAME Mathew
FIRST NAME
LAST NAME
tITLE
entity PHONE address宸
ML18. Plains Marketing, LP; Non-HVL Product Pipeline 14937

25085		
Attribute	Value	
- Category: PIPELINE ATTRIBUTES		
OPERATORID	26005	
OPERATOR NAME	PLANS MARKETING, L.P.	
SYSTEM NAME	PLAINS PRODUCTS TERMINALS	
SUESYSTEM NAME	LINE 191	
PIPELINE ID	14937	
MILES	0.88	
COMMODITY CATEGORY	Non-HM Product	
COMMODITY DESCRIPTION	PRODUCTS	
INTERSTATE DESIGNATION	N	
PIPELINE STATUS CODE	Active (unfilled)	
REVISION DATE	03/15/2018	
FRP SEQUENCE NuMBER		
- Category: GENERAL CONTACT		
FIRST NAME	BRYAN	
LAST NAME	FERGUSON	
tite	MGR GISIDATA INTEGRATION	
ENTITY		
PHONE	(713) 646-4308	
EMAll	beferguson [ipaap.com	
ADDRESS	333 CLAY STREET SUITE 1600	
CITY	HOUSTON	
State	TX	
Z 7 P	77002	

ML21. SFPP, LP; Non-HVL Product Pipeline LS-27; MARTINEZ-C

ML20. SFPP, LP; Non-HVL Product Pipeline LS-90/50/60; CONCOR

18092	*
Attribute	Vatue
- Category: PIPELINE ATTRISUTES	
OPERATOR ID	12092
OPERATOR NAME	SfPP, LP
SYSTEM NAME	SFPP_NORTH
SUBSYSTEM NAME	LS-SO/5066; CONCORD - FRESNO 12*
PIPELINE ID	LS-90/50\%0; CONCOR*
MULES	34.83
COMMCDITY CATEGORY	Non-HM Product
COMMODITY DESCRIPTION	NON HM PRCDUCs
INTERSTATE DESIGNATION	N
PIPELINE STATUS CODE	Active (filled)
REVISION DATE	0661,2018
FRP SEQUENCE NUMBER	
- Category: GENERAL CONTACT	
FIRST NAME	PATRICK
LAST NAME	RIBAN
TITE	MANAGER-ENGINEERING
ENTITY	
PHONE	(713) 420-5608
EMAIL	patrick_ribangekindermoryancom
ADDRESS	1001 LOUISIANA ST
CITY	HOUSTON
state	TX
219	77002

ML25. SFPP, LP; Non-HVL Pipeline LS-16; CONCORD-SA

ML24. Plains Marketing, LP; Non-HVL Pipeline 15588

ML27. SFPP, LP; Non-HVL Product Pipeline LS-9; CONCORD-BRADSHAW-10"

18092	
Attribute	Value
- Category: PIPEL L	
OPERATORID	18092
OPERATOR NAME	SFPP, LP
SYSTEM NAME	SFPP_NORTH
SUBSYSTEM NAME	LS-9: CONCORD- BRADSHAW 10*
PIPELINE ID	LS-9; CONCORD-BRA*
miles	32.60
COMMODITY CATEGORY	Non-HM Product
COMMCDITY DESCRIPTION	NON HML PRODUCT
INTERSTATE DESIGNATION	N
PIPELINE STATUS CODE	Active (filled)
REVSION DATE	06121/2018
FRP SEQUENCE NUMBER	
- Category: General Contact	
FIRST NAME	PATRICK
LAST NAME	RIBAN
tite	MANAGER-ENGINEERING
Entity	
PHONE	(713) 420.5608
Emall	patick__ibangekindemorgan.com
ADDRESS	1001 LOUISLANAST
ciry	HOUSTON
State	TX
ZIP	77002

ML26. Phillips 66 Pipeline, LLC; Crude Oil Pipeline 2260_42
$31684 \quad \div$
Category: PIPELINE ATBRIBUTES

- Category: PIPELINE ATBRIBUTES
OPERATOR ID 31689
OPERATOR NAME PHILLIPS 66 FIPELINE LLL
SYSTEA NAME JUNCTION TO RODEO REFINERY
SUBEYSTEM NAME COALINGA PMP STARODEO REFIN.
$2280 _42$
7.95
COMMODITY CATEGORY CNDE OR
COMMODIT CATEGCRY
COMMODITY DESCRIPIION
interstafe designation
$\begin{array}{ll}\text { INTERSTATE DESIGNATION } & N \\ \text { PIPELINE STATUS CODE } & \text { Active (filled) }\end{array}$ REVSION DATE 02:2212018
frp sequence number
- Category: general contact
몽 욜
Tullio
(832) 765-1636
Todd.L.Tullio@p6.co

$31684 \rightarrow$
- Category: PIPELINE ATJRIBUTES
SYSTEM NAME
PIPELINE IO
FIRST NAME
FIRST NAME
LAST NAME
ENITY PHONE
-

ML29. Phillips 66 Pipeline, LLC; Crude Oil Pipeline 2260_40

ML28. Shell Pipeline Co., LP; Crude Oil Pipeline 92

31174	
Attribute	Value
- Category: PIPELINE ATTRIBUTES	
OPERATOR ID	31474
OPERATOR NAME	SHELL PIPELINE CO., L.P.
SYSTEM NAME	COALINGA-AVON
SUBSYSTEM NAME	92-16INI2CINI24IN COALINGA TOA...
PIPELINE ID	92
MLLES	22.49
COMMODITY CATEGORY	Crude Oil
COMMODITY DESCRIPTION	CRUDE
INTERSTATE DESIGNATION	N
PIPELINE STATUS CODE	Active (filled)
REVISION DATE	0615/2018
FRP SEQUENCE 刑NBER	
- Category: GENERAL CONTACT	
FIRST NAME	Pratik
LASt name	Bhakta
TILE	Regulatory Ergineer
ENTITY	
PHONE	(832) 762-2752
EMAIL	pratik.bhakta@shell.com
ADDRESS	P.O. BOX 2648
city	Houston
state	TX
zip	77252

ML32. New Operator Pending; Natural Gas Liquids Pipeline 0770
ML34. Tesoro Logistics Operations; Crude Oil Pipeline 1107
ML35. Tesoro Logistics Operations; Crude Oil Pipeline 1107

31874	
Atribute	Value
- Category: PIPELINE ATRRIBUTES	
OPERATOR ID	31874
OPERATOR NAME	TESORO LOGISTICS OPERATIONS
SYSTEM NAME	GOLDEN EAGLE
SUBSYSTEM NAME	TESORO 63A CRUDE LINE
PIPELINE ID	1107
MILES	0.25
COMMODITY CATEGORY	Crude O 0
COMMODITY DESCRIPTION	
INTERSTATE DESIGNATION	N
PIPELINE STATUS CODE	Active (filled)
REMISION DATE	06\%14/2018
FRP SEQUENCE NUMBER	
- Category: GENERAL CONTACT	
FIRST NAME	Mathew
LAST NAME	Marusich
tifle	Operatione Area Manager
ENTITY	
PHONE	(925) 335-3452
EMAIL	MathewV.Marusieh ©andeavorcom
ADDRESS	150 Solano Way
CITY	Martinez
State	CA
ZIP	94553

PL1. Crimson Pipeline, LP Crude Oil Pipeline 76

32103		-
Atribute	Value	
- Category: PIPELINE ATTRIBUTES		
OPERATORID	32103	
OPERATOR NAME	CRIMSON PIPELINE L.P.	
SYSTEM NAME	LOS MEDANOS - VINE HILL	
SUBSYSTEM NAME		
PIPELINE ID	76	
MILES	15.65	
COMMODITY CATEGORY	Crude OL	
COMMODITY DESCRIPTION		
INTERSTATE DESICNATICN	N	
PIPELINE STATUS CCDE	Active (filled)	
REVISION DATE	08/10/2017	
FRP SEQUENCE NUMBER		
- Category: GENERAL CONTACT		
FIRST NAME	Mike	
LAST NAME	Romley	
fitle	Operations Director	
ENTITY		
PHONE	(661) 343-3218	
Emall	riromleyerimsonpl.com	
ADDRESS	2459 Redondo Ave.	
CITY	Long Beach	
STATE	CA	
ZIP	Spy 56	

APPENDIX A-4
Pittsburg Area Pipeline Data

PL2. SFPP, LP Non-HVL Product Pipeline LS-90/50/60; CONCOR

PL4. SFPP, LP; Non-HVL Product Pipeline LS-9; Concord-BRA

-

APPENDIX B
Critical Facilities Data

APPENDIX C

Toxic Threat Zone

greater than 1100 ppm (AEGL-3 [60 min])
greater than 30 ppm (ABGL-1 [60 min$]$)
wind direction confidence lines
Note: Threat zone picture is truncated at the 6 mile limit.

Toxic Threat Zone	ALOHA® 5.4.7
Time: July 18, 20191200 hours PDT (user specified)	
Chemical Name: PROPANE	
Wind: 9 miles/hour from w at 3 meters	
THREAT ZONE: Model Run: Heavy Gas	
Red : 469 yards --- (33000 ppm = AEGL-3 [60 min])	
Orange: 671 yards --- (17000 ppm = AEGL-2 [60 min])	
Yellow: 1142 yards $-=-$ (5500 ppm $=$ AEGL-1 [60 min])	

Text Summary

Source Strength (Release Rate)

[^7]

miles
greater than 1100 ppm (ARGL-3 [60 min])
greater than 30 ppm (AEGL-1 [60 min])
Not wind direction confidence lines
Note: Threat zone picture is truncated at the 6 mile limit.
$z-9$ XIONヨdd \forall
Pinch Point Richmond \#2

Source Strength (Release Rate)

pounds/minute
200,000 minutes
100,000
50,000
0

Toxic Threat Zone	ALOHA ${ }^{\text {a }}$.4.7
Time: July 18, 20191200 hours PDT (user specified)	
Chemical Name: propane	
Wind: 9 miles/hour from w at 3 meters	
threat zone:	
Model Run: Heavy Gas	
Red : 469 yards --- (33000 PPM = AEGL-3 [60 min $]$)	

\square greater than $10.0 \mathrm{~kW} /(\mathrm{sq} \mathrm{m})$ (potentially lethal within 60 sec)
\square greater than $5.0 \mathrm{~kW} /(\mathrm{sq} \mathrm{m})$ (2nd degree burns within 60 sec)
\square greater than $2.0 \mathrm{~kW} /(\mathrm{sq} \mathrm{m})$ (pain within 60 sec$)$

APPENDIX C-3
 Pinch Point Martinez \#3

pounds/minute
200,000
150,000
100,000
50,000
0

miles
greater than 1100 ppm (ABGI-3 [60 min])
greater than 160 ppm (AEGL-2 [60 min])
greater than 160 ppm (AEGL-2 [60 min])
greater than 30 ppm (AEGL-1 [60 min])

- wind direction confidence lines
Note: Threat zone picture is truncated at the 6 mile limit.

ALOHA오 5.4.7 ${ }^{2}$

Toxic Threat Zone	ALOHA® 5.4.7
Time: July 18, 20191200 hours PDT (user specified) Chemical Name: AMMONIA	
Wind: 9 miles/hour from w at 3 meters	
threat zone:	
Model Run: Heavy Gas	
Red : 2.1 miles - ($1100 \mathrm{ppm}=\mathrm{AEGL}-3$ (60 min])	
Orange: 4.6 miles $--(160 \mathrm{ppm}=$ AEGL-2 $[60 \mathrm{~min}])$	
Yellow: greater than 6 miles $--(30 \mathrm{ppm}=$ AEGL-1 $[60 \mathrm{~min}])$	

[^8]APPENDIX C-4
Pinch Point Bay Point \#4

Source Strength (Release Rate)	ALOHA (8) 5.4.7	
Time: July 18, 20191200 hours PDT (user specifled)		
Chemical Name: PROPANE		
SOURCE STRENGTH:		
Leak from hole in horizontal cylindrical tank		
Flammable chemical escaping from tank (not burning)		
Tank contains liquid Internal Temperature: 858 F		
Chemical Mass in Tank: 68.1 tonsCircular Opening Diameter: 10 inches		
opening is 5 inches from tank bottom		
Release Duration; 2 minutes		
Max Average Sustained Release Rate: 120,000 pounds/min (averaged over a minute or more)		
Total Amount Released: 136,200 pounds		
Note: The chemical escaped as a mixture of gas and aerosol (two phase flow).		

Toxic Threat Zone	ALOHA® 5.4.7
Time: July 18, 20191200 hours PDT (user specified) Chemical Name: PROPANE	
Wind: 9 miles/hour from w at 3 meters	
threat zone:	
Red : 468 yards - - ($33000 \mathrm{ppm}=$ AEGL-3 $[60 \mathrm{~min}])$	
Orange: 671 yards --- (17000 ppm $=$ AEGL-2 $[60 \mathrm{~min}])$	
Yellow: 1142 yards --- (5500 ppm $=$ ABGL-1 $[60 \mathrm{~min}])$	

Thermal Radiation Threat Zone		
	Time: July 18, 20191200 hours PDT (user specified)	
	Chemical Name: PROPANE	
	Wind: 9 miles/hour from w at 3 metersThreat zons:	
	Yellow: 1206 yards --- ($2.0 \mathrm{~kW} /(\mathrm{sq} \mathrm{m})=$ pain within 60 sec) Orange: 715 yards -1206 yards $-(5.0 \mathrm{~kW} /(\mathrm{sq}$ m) $=2$ nd degree burns within 60 sec) Threat Modeled: Thermal radiation from fireball Red $=549$ yards $-(10.0 \mathrm{~kW} /(\mathrm{sq} \mathrm{m})=$ potentially lethal within 60 sec$)$ Orange: 775 yards $-(5.0 \mathrm{~kW} /(\mathrm{sq} \mathrm{m})=2$ nd degree burns within 60 sec$)$	

APPENDIX C-5
Pinch Point Antioch \#5

greater than 1100 ppm (AEGL-3 [60 min])
greater than 160 ppm (AEGL-2 [60 min)
greater than 30 ppm (AEGL-1 [60 min$]$)
Note: Threat zone picture is truncat
Note: Threat zone picture is truncated at the 6 mile limit.

Toxic Threat Zone	ALOHA® 5.4.7 ${ }^{\text {a }}$
Time: July 18, 20191200 hours PDT (user specified)	
Chemical Name: PROPANE	
Wind: 9 miles/hour from w at 3 meters	
THREAT ZONE:	
Model Run: Heavy Gas	
Red : 469 yards --- (33000 ppm ABGL-3 [60 min])	
Orange: 671 yards $-2-$ ($17000 \mathrm{ppm}=$ AEGL-2 [60 min])	
Yellow: 1142 yards $---(5500 \mathrm{ppm}=$ AEGL-1 [60 min])	

SITE DATA: Location: ANTIOCH, CALIFORNIA Building Aic Exchanges Per Hour: 0.85 (unshaltered single storied) Time: July 18, 20191200 hours PDT (user specified)
ChEMICAL DATA:
Chemical Name: PRopans
CAS Number: 74 -98-6 ${ }^{\text {c }}$ Molecular Weight: $44.10 \mathrm{~g} / \mathrm{m}$
AEGL-1 (60 min): 5500 ppm AEGL-2 (60 min) : 17000 ppm AEGL-3 (60 min) :
IDLH: 2100 ppm LEL: 21000 ppm UEL: 95
Ambient Boiling Point: -43.78 ${ }^{\text {F }}$
Vapor Pressure at Ambient Temperature: greater than 1 at
Ambient Saturation Concentration: $1,000,000 \mathrm{ppm}$ or 100.08
TMOSPHERIC DATA: (MANUAL INPUT OF DATA)
wind: 9 miles/h
Ground Roughness: urban or forest cloud cover: 5 ten
No Inversion Height \quad Relative Humidity: 508
SOURCE STRENGTH:
Leak from hole in horizontal cylindrical tank
Flammable chemical escaping from tank
Tank Diameter: 10.66 feet
Tank Volume: 34397 great Tand
Tank contains liquid In
Chemical Mass in Tank: 68.1 tons Tank is 98\% full
Circular Opening Diameter: 10 inches
Opening is 5 inches from tank bottom
Release Duration: 2 minutes
Max Average Sustained Release Rate: 120,000 pounds/min
Note: The chemical escaped as a mixture of gas and aerosol (tmo phas
at zone:
odel Run: Heavy Gas
Red : 469 yards - - $33000 \mathrm{ppm}=$ AEGL-3 160
Orange: 671 yards $--(17000$ ppmin $=$ AEGL-2 $[60 \mathrm{~min}])$
Yellow: 1142 yards --- (5300 ppma $=$ AEGL-1 ${ }_{\text {l }}(60 \mathrm{~min}$) $)$

Attachment

Item 2

Proposed County Legislative Platform General Principle Statements from Planning and Policy Development Committee - January 15, 2020

Exposure

1) Support legislative efforts to reduce or eliminate lead and toxic substances in consumer products, particularly those used by infants and children.
2) Support legislative efforts to reduce exposure to toxic air pollutants and reduction of greenhouse gases.

Land Use

3) Support legislative efforts to evaluate, clean up and redevelop contaminated sites.
4) Support legislative efforts that address the illegal dumping of household hazardous wastes through incentives and enforcement.

Pipeline Safety

5) Support legislative efforts that increase the safety of the shipment of hazardous materials by pipeline through better monitoring, detection, operational practices and equipment.

School Siting

6) Support legislative efforts that reduce the risk to students from the accidental release of hazardous materials by requiring risk assessments that account for all sources of hazardous materials as part of school siting and re-building decisions.

Goods Movement

7) Support legislative efforts to increase and improve waterborne transportation of goods when it increases safety.

Rail Safety

8) Support legislative efforts that improve the safety of the shipment of hazardous materials by rail through training for local first responders, increased sharing of data, reduction of material hazards, and appropriate speed limits.

Waste Management

9) Support legislative efforts that establish producer responsibility for management at the end of their useful life of products, including pharmaceuticals, batteries, sharps and veterinary medicine.
10) Support legislative efforts to allow third parties, under specific circumstances and conditions, to collect and transport household hazardous waste to collection facilities.
11) Support legislative efforts that reduce the amount of harmful pharmaceuticals (including veterinary medicine) that ultimately enter waste water treatment facilities, bodies of water, and landfills.

Attachment

Item 3

2019 State Legislative Platform

Health Care

112.SUPPORT legislative efforts to reduce or eliminate lead and toxic substances in consumer products, particularly those used by infants and children.
113. SUPPORT legislative efforts to reduce exposure to toxic air pollutants and the reduction of greenhouse gases.

Land Use/Community Development

224. SUPPORT efforts to promote economic incentives for "smart growth," in Priority Development and Priority Production Areas including in-fill and transit-oriented development. Balancing the need for housing and economic growth with the urban limit line requirements of Measure J (2004) will rely on maximum utilization of "smart growth" and Sustainable Community Strategy principles. Priority Production Areas are locally designated zones where manufacturing, warehousing, distribution and repair services would be a priority consideration in determining future land use.
225. SUPPORT legislation that funds programs to remediate brownfield sites in the County and modifies existing programs to make implementation easier or apply more broadly. Specifically:
\square Consider modification to the Cleanup Loans and Environmental Assistance to Neighborhoods (CLEAN) program that would simply the approval process for applications;
\square Broaden the criteria for sites that are eligible for California Land Reuse and Revitalization Act (CLRRA) to include all sites that are listed by the State or Federal Government as contaminated; and \square Fully fund the California Recycle Underutilized Sites (CALReUse) program.

Law and Justice System

248. SUPPORT legislation that provides a practical and efficient solution to addressing the problem of abandoned and trespassing vessels and ground tackle in an administrative process that allows the California State Lands Commission to both remove and dispose of such vessels and unpermitted ground tackle. Boat owners in increasing numbers are abandoning both recreational and commercial vessels in areas within the Commission's jurisdiction. Our state waterways are becoming clogged with hulks that break up, leak, sink and add pollutants to our waterways and marine habitat.

Pipeline Safety

267. SUPPORT legislation that contains specific mitigations or solutions for installation of Automatic Shutoff Valves for both High Consequence Areas (HCA) and for those that transverse Active Seismic Earthquake Faults for all intrastate petroleum pipelines. State Fire Marshal Annual Inspections of all Intrastate Petroleum Pipelines do not contain the specific mitigations or solutions for installation of Automatic Shutoff Valves for both High Consequence Areas (HCA) and for those that traverse Active Seismic Earthquake Faults that are mandated for Gas Pipelines under AB 2856. The County has several petroleum pipelines that should be classified under these categories and present the same explosive nature as gas pipelines do.
268. SUPPORT legislation that contains specific language for protection of all seasonal and all year creeks and all State Waterways where petroleum pipelines are present. New and replacement pipelines near environmentally and ecologically sensitive areas should use the best available technology including, but not limited to, the installation of leak detection technology, automatic shutoff systems or remote controlled sectionalized block valves, or any combination of these technologies to reduce the amount of oil released in an oil spill to protect state waters and wildlife.

Transportation

278. SUPPORT efforts to coordinate planning between school districts, the state, and local jurisdictions for the purposes of: (1) locating and planning new schools, (2) funding programs that foster collaboration and joint use of facilities, and (3) financing off-site transportation improvements for improved access to existing schools. The County will urge the California Department of Education's current Title 5 update effort to include removing the current conflict between current school siting policies and sustainable communities. Related to this effort, the County supports reform of school siting practices by way of legislative changes related to any new statewide school construction bond authorization. The County takes the position that reform components should include bringing school siting practices and school zone references in the vehicle code into alignment with local growth management policies, safe routes to school best practices, State SB 375 principles, and the State Strategic Growth Council's "Health in All Policies Initiative." The County will also urge DOE's current Title 5 update effort to apply the requirements of Title 5, as they pertain to evaluating the risks from hazardous materials, to schools being rebuilt on the site of existing schools and to charter schools, and to include the evaluation of risks from hazardous materials potentially released from nearby industrial facilities due to fire, explosions or accidental releases to school siting criteria. Related to this, the County supports the development of guidelines for assessing and mitigating the risks of siting new schools near industrial facilities and rail lines due to potential explosions and fires from the use, storage, manufacture and transportation of hazardous materials, similar to the guidelines they have established for assessing and mitigating the risks from the transportation of hazardous materials through pipelines. State financial and/or technical support to offset the cost of adhering to new guidelines or requirements should be provided.
279. SUPPORT efforts to increase waterborne transport of goods and obtaining funds to support this effort. The San Francisco to Stockton Ship Channel is a major transportation route for the region, providing water access to a large number of industries and the Ports of Sacramento and Stockton. A project is underway to deepen the channel, providing additional capacity to accommodate increasing commerce needs of the Ports and providing better operational flexibility for the other industries.
Increased goods movement via waterways has clear benefits to congestion management on highways and railroads (with resultant air quality benefits).
280. SUPPORT legislative and administrative measures to enhance rail safety, increase state oversight of railroad bridges, provide funding for the training of first responders, and implement regulations that increase tank car safety standards for cars transporting crude oil and other hazardous materials, and regulations that require railroads to share data with state emergency managers and local responders.

Waste Management

288. SUPPORT legislation that establishes producer responsibility for management at the end of their useful life of products, including pharmaceuticals, batteries, sharps and veterinary medicine.
289. SUPPORT legislative and regulatory efforts to allow third parties, under specific circumstances and conditions, to collect and transport household hazardous waste to collection facilities.
290. SUPPORT legislation that can reduce the amount of harmful pharmaceuticals (including veterinary medicine) that ultimately enter waste water treatment facilities, bodies of water, and landfills.

June 25 recs to Board

1) Support federal legislation that improves leak detection systems in pipelines.
2) Support federal legislation that requires pipeline operators to contract for an independent technical seismic vulnerability study on HCA pipelines affected by potentially active faults to feed into the pipeline risk analysis, and make the study available to the public.

Attachment

Item 4

Table of Contents

Executive S	
Public Parti	
Audits........	
Major Chemical Accidents or Releases... 4	
Conclusion	
Introduction ...	
Annual Performance Review and Evaluation Report..11	
Effectiveness of Contra Costa Hazardous Materials Programs' Implementation of the Industrial Safety	
Effectiveness of the Procedures for Records Management... 10	
Number and Type of Audits and Inspections Conducted..	
Number of Root Cause Analyses and Conducted by Hazardous Materials Program 11	
Hazardous Materials Programs' Process for Public Participation ... 12	
Effectiveness of the Public Information Bank.. 12	
Effectiveness of the Hazardous Materials Ombudsperson... 13	
Other Required Program Elements Necessary to Implement and Manage the Industria	
Ordinance.. 13	
Regulated Stationary Sources Listing.. 14	
Status of Safety Plans and Programs.. 7	
Locations of the Regulated Stationary Sources Safety Plans.. 9	
Annual Accident History Report and Inherently Safer Systems Implemented as Submitted by the Regulated Stationary Sources.\qquad 13	
Status of the Incident Investigations, Including the Root Cause Analyses Conducted by the Regulated	
Stationary Sources... 15	
Legal Enforcement Actions Initiated by Contra Costa Hazardous Materials Programs 18	
enalties Assessed as a Result of Enforcement...18	
Total Fees, Service Charges and Other Assessments Collected Specifically for the Industrial Safety	
Total Personnel and Personnel Years Used by Hazardous Materials Program to Implement the Industrial	
Comments from Interested Parties Regarding the Effectiveness of the Industrial Safety Ordinance 19	
The Impact of the Industrial Safety Ordinance on Improving Industrial Safety .. 19	
Hazardous Materials Ombudsman Report...-23-28	
Attachment B-County Regulated Sources Annual Performance ..30-70	
Attachment C-Richmond Regulated Sources Annual Performance...71-83	

Executive Summary
Contra Cosid County's
Contra Costia County's Industrian Saletyy Ordirsance (ISO), adopted in 1998 by the Board of Supervisors, requires
regulated faciities in the county to implement comprehensive safety programs to prevent chemical accidents. The ISO's requirements are some of the most stringent in the United States, if not the world. The goal is for facilities to implement comprehensive safety programs, instill a safety culture at the work place and create management systems that prevent incidents that could have detrimental impacts to surrounding communities. The ISO also mandates outreach and participation from industries, agencies, elected officials and the public.

Three major oil refineries and three chemical facilities are required to comply with ISO requirements. Two Richmond Industrial Safety Ordinance (RISO), which mandates the same requirements from a separate municipal authority. Both ordinances are administered by Contra Costa County's Hazardous Materials Programs (CCHMP), a division of Contra Costa Health Services. CCHMP annually evaluates and reports on ISO performance to the Board of Supervisors.

There were no Major Chemical Accidents or Releases (MCAR) as defined in the ISO at any regulated facility in this reporting period and, while there have been Community Warning System (CWS) Level II and CWS Level III incidents that caused community concern over the past two decades, there is an overall observable trend offewer and less severe incidents in the county. CCHMP believes that ISO is a major contributor to the safety records of these
facilities.

It can be a challenge to stay vigilant and ensure continuous safe facility operations in mature prevention programs, but recent amendments to program requirements have helped the ISO and RISO programs continue to improve the thoroughness and completeness of audits and inspections. In 2014, for example, the Board
of Supervisors adopted amendments to the ISO as recommended by the U.S. Chemical Safety and Hazard nvestigation Board (CSB). In 2015, CCHMP staff piloted procedure walk-downs and field verifications of Piping and Instrumentation Diagrams (P\&IDs) at ISO facilities. These field activities have since been incorporated into the audit activities at other hazardous materials regulated facilities.

CCHMP also worked closely with Department of Industrial Relations (DIR), California Office of Emergency Services (Cal OES) and California Environmental Protection Agency (CalEPA) to develop two new, statewide petroleum Management requirement for Petroleum Refineries. Both were developed from requirements in Contra Costa's ISO and were adopted into regulation by the state in October 2017. CCHMP believes these new regulations will further improve safety programs at all California petroleum refineries as demonstrated here in Contra Costa County.
CCHMP is also working closely with other Certified Unified Program Agencies (CUPA) in the development and implementation of these regulations for refineries.

CCHMP's Accidental Release Prevention (ARP) Program engineers oversee the ISO and RISO programs and work with other agencies such as the U.S. Environmental Protection Agency (EPA), the California Occupational Safety and Health Administration (Cal-OSHA), CSB and other local program agencies. This Interagency collaboration includes sharing of incident and inspection results, discussion of regulatory interpretations and joirit training.

Public Participation
CCHMP has an established public outreach process and is continually looking for ways to improve it. The following community engagement efforts took place in this reporting period:

- Safety audits for Shell Martinez Refinery, Air Products Shell and Air Products Marathon Martinez Refinery were shared at Alhambra Christmas Tree Farm, Martinez, During National Night Out, August 6, 2019 Chevron Richmond Refinery and Chemtrade Richmond's safety plans and safety audits were shared at the Cinco De Mayo celebration in Richmond on May 5, 2019

CCHMP staff answered questions and shared information regarding the CaIARP/SO/RISO programs at the 20,2019

Presentation of the safety audit to the Marathon Martinez Refinery Community Advisory Panel (CAP) on August 28, 2019

- Presentation of the safety audit to the Shell Refinery's Community Advisory Panel (CAP) on May 13, 2019
Presentation of the safety audit to the Phillips 66^{\prime} ' Community Advisory Panel (CAP) on August 27, 2018 Attend public meetings after major incidents

There were no Severity III incidents in this reporting period
The most recent audit findings are summarized in an easily read format in English and Spanish and posted at
cchealth.org/hazmat
Information on regulated businesses is presented in an easily read format in English and Spanish Industrial Safety Ordinance Information Sheets are prepared in English and Spanish

The Board of Supervisors also requested that staff provide copies of the annual report to communities through
the Community Advisory Panels (CAP). This 2019 Annual Report is available on our website and will be sent to CAP representatives for distribution.

Audits
Audits of regulated businesses are required at least once every three years to ensure that the facilities are implementing required programs. We completed two ISO and RISO audits in 2019:

- Chevron Richmond Refinery - June 2019

Major Chemical Accidents or Releases
There were no MCAR events at ISO-regulated facilities in this reporting period.
Conclusion
The severity of MCAR events in Contra Costa County has declined since the implementation of the ISO, with a few minor
irregularities in the trend. The 150 has improved regulated facilities' safety programs and operations.
CCHMP has sought assistance from stakeholders, including regulated faciities, workers and community members, to
include the CSB-recommended improvements to the ordinance that the Board of Supervisors adopted in 2014. These further reduce likelihood of chemical accidents at these industrial facilities.

Background

The Board of Supervisors adopted the ISO due to significant accidents that occurred at oil refineries and chemical (he county in the 1990s. The effective date of the ISO was January 15, 1999. The ordinance applies to oil refineries and chemical plants with specified North American Industry Classification System (NAICS) codes that were the U.S. EPA Risk Management Program. The ordinance specified the following:
Stationary sources had one year to submit a safety plan to CCHMP stating how they are complying with the ordinance, except the Human Factors portion (completed January 15, 2000)
Stationary sources had one year to comply with the Human Factors Guidance Document (compliance date: January 15, 2001)
After an MCAR event, stationary sources are required to perform a root cause analysis as part of their incident
investigations (ongoing) investigations (ongoing)
All processes at stationary sources are covered as Program Level 3 (now Petroleum Refineries Program Level 4 procerses as defined by the CalARP program)
Stationary sources are required to consider inherently safer systems for new processes or facilities and for mitigations identified in a process hazard analysis
CCHMP reviewed all the submitted safety plans and inspected all the stationary sources' safety programs within one year of receipt (completed January 15,2001) and every three years after the initial audit or

Locations of the Regulated Stationary Sources Safety Plans Regulated stationary sources are required to update their safety plans at least once every three years. These plans are available for public review at the Hazardous Materials Programs office, 4585 Pacheco Blvd., Suite 100, Martinez. When CCHMP determines that a safety plan update is complete, prior to the required 45 -day public comment period, staf is easily accessible for public review. Table II lists each safety plan location.
Location of Safety Plans—Libraries

Regulated Stationary Source	Location 1	Location 2	Location 3
Air Liquide Large Industries	Hazardous Materials Programs Office	Rodeo Public Library	Crockett Public Library
Air Products at Shell	Hazardous Materials Programs Office	Martinez Public Library	
Air Products at at Marathon (formerly Tesoro)	Hazardous Materials Programs Office	Martinez Public Library	
Shell Refining-Martinez	Hazardous Materials Programs Office	Martinez Public Library	
Phillips 66 (formerly ConocoPhillips) Rodeo Refinery	Hazardous Materials Programs Office	Rodeo Public Library	Crockett Public Library
Marathon (formerly Tesoro Golden Eagle Refinery)	Hazardous Materials Programs Office	Martinez Public Library	

Effectiveness of Implementation of the Industrial Safety Ordinance
Contra Costa Hazardous Materials Programs has developed policies, procedures, protocols an
Contra Costa Hazardous Materials Programs has developed policies, procedures, protocols and questionriaires to policies, procedures, protocols and questionnaires for these programs are listed below:
Audiland
Conducting the Risk Mana
Risk Management Plan Co Risk Management Plan Completeness Review Questionnaires
Safety Plan Completeness Review Questionnaires Conducting Audits/Inspections Protocol Safe Work Practices Questionnaires Safety Program Audit Questionnaires Conducting Employee Interviews Pratocol
Employee Interview Questionnaires
Procedure Field Verification Protocol Public Participation Policy

Dispute Resolution Policy

Covered Process Modification Po It Policy
CaIARP Internal Performance Audit Policy
CaIARP Internal Audit Performance Audit Submission
Fee Policy
Unannounced Inspection Policy
Risk Management Plan Public Re
Hazardous Materials Programs also developed the Contra Costa County CalARP Program Guidance Document and the Contra Costa County Safety Program Guidance Document, which was updated and reissued to regulated facilities on July 22, 2011. All policies, procedures, protocols and questionnaires are available through Hazardous Materials Programs office, and the guidance documents are available electronically at: http://cchealth.org/hazmat/calarp/
guidance-documentphpand hitp://chealth.org/groups/hazmat/industrial safety ordinance guidance.php.
CCHMP staff is working with regulated facilities and labor representatives to revise the Safety Program Guidance Document based on audit results and set expectations for compliance with the ordinance.
Effectiveness of the Procedures for Records Management A
Annual status reports
Audits $\&$ inspections
2. Communications
Complete
6. Incident investigation
Digital copies of the files are stored on the Hazardous Materials Programs network and are accessible to the Accidental Release Prevention Program engineers, supervisor and the Environmental Health and Hazardous Materials Chief. Accidental Release Prevention Program files contain regulations, policies, information from the U.S. EPA, the Governor's Office of Emergency Services, CSB, and other information pertinent to the engineers. The risk management and safety Number and Type of Audits and Inspections Conducted
In fall of 2019, CCHMP began required audits at each of the ISO and RISO facilites. It is the eighth round of audits since 2000 .
When CCHMP ARP engineers review a safety plan, a notice of deficiencies is issued documenting any changes the stationary source must make before the plan is determined to be complete. The stationary source has 60 to 90 days

Description of Inherently Safer Systems implemented by regulated stationary sources
Legal enforcement actions initiated by CCHMP, including administrative, civil and crimin

Table IIIInherently Safer Systems Contra Costa County Facilities			
Regulated Stationary Source	Inherently Safer System Implemented	Design Strategy	Approach
Air Liquide Large Industries	No new inherently safer systems have been implernented		
Air Products at Shell	No now inherently safer systems have been implemented		
Air Products at Marathon (formerly Tesorol	Reduced potential of exposure by changing layout or design, equipment (i time)	Passive	Moderate
Phillips 66 (formerly ConocoPhillips) -Rodeo Refinery	Reduced inventory by changing equipment in proces (12 times)	Inherent	Moderate
	Reduced potentlal of exposure by changing layout or design, equipment (10 times)	Passive	Moderate
	Reduced potential unit upset by changing equipment or addling alarms (4 times)	Active	Moderate
	Reduced potentlal of exposure by changing equipment layout or design (1 time)	Active	Simpilfy
	Reduced potentlal of error by adding administrative controls (2 times)	Procedural	Simplify
Shell Martinez Refinery	Eliminated equipment fram process(2 times)	Inherent	Simplify
	Reduced potential of exposure by changing design, equipment metallurgy (21 times)	Inherent	Moderate
	Simplified unit design and chemical by changing equipment (1 time)	Active	Simplify
	Reduced potential unit upset by changing equipment or adding alarms (6 times)	Active	Moderate
	Reduced potentlal of error in procedure (1 time)	Procedural	Moderate
	Reduced potential of error by changing service in procedure (3 times)	Procedural	SImplify
Marathon (formerly Tesoro Golden Eagle Refinery)	Reduced potential for escalation of an incident, (5 times)	Inherent	Moderate
	Reduced potential of the hazardous condition by equipment design features (5 times)	Passive	Moderate

Description of the Green Business Program with a link to the Association of Bay Area Government's website on the Green Business Program

$$
\begin{aligned}
& \text { Hazardous Materials Incident Response Team } \\
& \text { - Including information of the Major Chemical Accidents or Releases that have occurred } \\
& \text { - The County's Hazardous Materials Incident Notification Policy }
\end{aligned}
$$

[^9]Other Required Program Elements Necessary to Implement and Manage the ISO The CaIARP Program is administered in Contra Costa County by CCHMP. Stationary sources are required to submit risk performs CalARP Program audits simultaneously with ISO audits.

CCHMP staff also perform unannounced inspections of CaIARP program stationary sources that are also required to submit a risk management plan to the U.S. EPA. These inspections aim to exercise how a facility will respond to an
incident, including notifying emergency response agencies and CCHMP.

Annual Accident History Report and Inherently Safer Systems Implemented as
Submitted by the Regulated Stationary Sources
The ISO requires stationary sources to update their accident history in their safety plans and include how they have used inherently safer processes within the last year. Table Ill summarizes Inherently Safer Systems that have been implemented during this reporting period. Attachment B includes individual reports from stationary sources that aso
include the required reporting of four common process safety performance indicators.

Status of the Incident Investigations, including the Root Cause Analyses Conducted by the Regulated Stationary Sources

The ISO requires regulated stationary sources to conduct an incident investigation including a root cause analysis
(RCA) after each MCAR incident. MCAR incidents meet the definition of a Level 3 or Level 2 incident in the Community Warning System incident level classification system defined in the Hazardous Materials Incident Notification Policy, as determined by Contra Costa Health Services; or result in the release of a regulated substance and meet one or more of the following criteria:

Results in one or mater than 24 hours of hospital treatment of three or more persons
Results in greater
Causes on-and/or off-site property damage (including cleanup and restoration activities) initially estimated at $\$ 500,000$ or more. On-site estimates shail be performed by the regulated stationary source. Off-site estimates shall be performed by appropriate agencies and compiled by Health Services

Results in a vapor cloud of flammables and/or combustibles that is more than 5,000 pounds The regulated stationary source is required to submit a report to CCHMP 30 days after the root cause analysis is complete. There was no MCAR incidents that occurred within this reporting period in Contra Costa County at an ISO facility. All RCA reports for MCAR incident reports are available at the CCHMP office and website.
Major Chemical Accidents or Releases
CCHMP analyzed the number and severity of MCARs that occurred since the implementation of the ISO:
Severity Level III - Resulted in a fatality, serious injuries or major on-site and/or off-site damage Severity Level II - Resulted in an impact to the community, or could easily have become a Level III incident if the situation was slightly different, or it is a recurring type of incident at that facility
Severity Level I - Resulted in no or minor injuries, no or slight impact to the community, and no or
minor on-site damage
These charts show MCARs from January 1999 through October 2017 for ali stationary sources in Contra Costa County, MCARs at stationary sources regulated by the ISO, and MCARs at stationary sources regulated by the ISO or by the RISO. The charts include MCARs at stationary sources only, none that occurred during transportation.

15

report. The total time taken to perform these audits was 3,600 hours. Approximately one-third of the time was
dedicated to the ISO, or 1, 200 hours. This year, CCHMP used larger teams that included recently hired ARP engineers, who participated in audits as part of their training for an additional 850 hours.
Reviewing information and foll Preparing material for presentations and public meetings -450 personnel hours
Approximately 3,828 hours total of CCHMP personnel time was spent on the ISO during the current reporting period. The total does not include ombudsperson time spent preparing for public meetings, working with engineers on questions arising from the ISO, and answering questions from the public on the 150 .

Comments from Interested Parties Regarding the Effectiveness of the Industrial Safety Ordinance

No comments were received by CCHMP regarding ISO or RISO during current reporting period.

The Impact of the ISO on Improving Industrial Safety

The ISO is one of four programs that work together to reduce the risk of accidental release from a regulated stationary source that could impact communities in Contra Costa County. Those programs are:
the Process Safer Acidental Release Prevention Program administered by the U.S. EPA
the California Accidental Release Prevention Program administered by CCHMP
the Industrial Safety Ordinance, also administered by CCHMP
Each of the programs is very similar in requirements. On October 1, 2017, California petroleum refineries are required Program 3 differs from the Federal Accidental Release Prevention Program in the following ways:
. The number of chemicals regulated

- The threshold quantity of these chemicals
Additional information in the Risk Management Plan
CCHMP is required to audit and inspect stationary sources at least once every three years
The interaction required between the stationary source and CCHMP
The ISO differs from CaIARP Program 3, which the chemical facilities are required to follow, in the following ways: Stationary sources ar Releases
The stationary sources are required to consider inherently safer systems for existing processes, in the development and analysis of recommended action items identified in a process hazard analysis, as part of recommendation, and during the design of new processes, process units and facilities.
All of the processes at the regulated stationary sources are covered
and maintenance procedures and in root cause analysis
Managing changes in the organization for operations, maintenance and emergency response

¢				$\begin{array}{\|l\|l} \frac{0}{0} \\ \frac{0}{0} \\ \frac{0}{0} \\ \frac{0}{2} \end{array}$			$\begin{aligned} & \frac{0}{8} \\ & \frac{0}{5} \\ & \frac{0}{0} \\ & \frac{0}{2} \end{aligned}$		$\left\lvert\, \begin{aligned} & \frac{0}{8} \\ & \frac{0}{8} \\ & \frac{0}{8} \\ & \frac{0}{2} \end{aligned}\right.$		$\begin{aligned} & \frac{\stackrel{\rightharpoonup}{c}}{\substack{a}} \\ & \stackrel{y}{c} \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{0}{0} \\ \frac{0}{2} \\ \frac{0}{0} \\ \frac{0}{2} \end{array}$
				$\begin{aligned} & \stackrel{\rightharpoonup}{t} \\ & \stackrel{y}{0} \\ & \underline{e x} \\ & \underline{\underline{5}} \end{aligned}$					$\left\lvert\, \begin{aligned} & \frac{0}{2} \\ & \frac{2}{8} \end{aligned}\right.$			$\left\lvert\, \begin{aligned} & \frac{y}{w} \\ & \stackrel{y}{y_{0}^{2}} \\ & \hline \end{aligned}\right.$
*												

Programs in place in Contra Costa County.

- In September 2012, CCHMP was asked to present at the "Expert Forum on the Use of Performance-based Regulatory Models in the U.S. Oil and Gas Industry: Offshore and Onshore" in Texas City, Texas to share the regulatory experience at Contra Costa County and give testimony on how local, state and Federal agencies
can work together and have an unprecedented alignment on regulations that is required for the same can work together and have an unprecedented alignment on regulations that is required for the same
facilities. This meeting was spearheaded by Federal Occupational Safety and Health Administration and attended by Bureau of Safety and Environmental Enforcement, U.S. Coast Guard, U.S. EPA, Pipeline and
Hazardous Materials Safety Administration, United Steelworkers, American Petroleum Institute, academia and industry representatives.
Emergency Planning Programs to Prevent and Address Chemical Threats, Including the Events Leading up to the Explosions in West, TX and Geismar, LA" before the U.S. Senate's Committee on Environment and Public Works.
City of Richmond Industrial Safety Ordinance
The Richmond City Council passed its version of the ISO on December 18, 2001. Richmond's Industrial Safety Ordinance (RISO) mirrors the ISO, covering two stationary sources: Chevron Richmond Refinery (Chevron) and Chemtrade West Richmond, (Chemtrade, formerly General Chemical). CCHMP administers RISO for the city.

> The sixth RISO/CalARP audit at Chevron was completed in August 2016 and in July 2017 for Chemtrade. CCHMP received an annual performance update from Chevron and Chemtrade in June 2017. CCHMP will begin the seventh RISO/CaIARP audit at Chevron in June 2020. CCHMP worked with U.S. EPA, Cal OSHA. BAAQMD and CSB in CSB's independent investigation of the August 6,2012 .

Name/ Location of copies	Safety Plan (SP) Received	Noflce of Deficiencies (NOD) Issued-SP	Safety Plan Complete	SP Public Meeting Date	Audil/ Inspection	Audit Public Meeting
Chevron Richmond/ Point Richmond and Richmond Main Public Library	$\begin{aligned} & 1 / 21 / 03 \\ & 6 / 21 / 04 \\ & 9 / 29 / 106 \\ & 9 / 25 / 09 \\ & 9 / 24 / 12 \\ & 9 / 30 / 15 \\ & 6 / 28 / 18 \end{aligned}$	$\begin{aligned} & \text { 4/23/03 } \\ & 11 / 08 / 12 \end{aligned}$	$\begin{aligned} & \hline 10 / 10 / 03 \\ & 6 / 22 / 04 \\ & 5 / 21 / 07 \\ & 11 / 04 / 09 \\ & 11 / 12 / 13 \\ & 7 / 25 / 18 \end{aligned}$	$\begin{aligned} & \hline 10 / 14 / 03 \\ & 6 / 24 / 04 \\ & 6 / 02 / 07 \\ & 9 / 25 / 10 \\ & 10 / 05 / 13 \\ & 10 / 24 / 15 \\ & 5 / 05 / 19 \end{aligned}$	$1 / 11 / 01$ (Non-R1SO) $9 / 29 / 03$ $2 / 13 / 06$ $4 / 14 / 08$ $2 / 08 / 11$ $10 / 03 / 13$ $7 / 18 / 16$ $6 / 03 / 19$	6/24/04 6/02/07 4/25/09 9/24/11 10/24/15 5/05/19
Chemtrade Richmond Works/Point Richmond and Richmond Main Public Library	$\begin{aligned} & \hline 7 / 17 / 03 \\ & 6 / 21 / 04 \\ & 4 / 17 / 09 \\ & 8 / 05 / 14 \\ & 11 / 26 / 18 \end{aligned}$	$\begin{aligned} & 4 / 11 / 03 \\ & 2 / 18 / 10 \\ & 7 / 10 / 15 \end{aligned}$	$\begin{gathered} \hline 10 / 10 / 03 \\ 4 / 17 / 06 \\ 5 / 26 / 10 \end{gathered}$	$\begin{aligned} & \hline 10 / 14 / 03 \\ & 6 / 02 / 07 \\ & 9 / 25 / 10 \\ & 5 / 01 / 16 \\ & 5 / 05 / 19 \end{aligned}$	5/29/01 (Non-RISO) $4 / 24 / 06$ $8 / 18 / 03$ $1 / 05 / 09$ $1 / 05 / 12$ $9 / 08 / 14$ $7 / 17 / 17$	$\begin{aligned} & \hline 6 / 24 / 04 \\ & 6 / 02 / 07 \\ & 9 / 25 / 10 \\ & 10 / 05 / 13 \\ & 10 / 244115 \\ & 5 / 05 / 19 \end{aligned}$

I. INTRODUCTION
On July 15, 1997 the Contra Costa County Board of Supervisors authorized creation of an Ombudsman position for the County's Hazardous Materials Programs. The first Hazardous Materials Ombudsman began work on May 1, 1998. The Contra Costa County Board of Supervisors adopted an Industrial Safety Ordinance on December 15, 1998. Kоןdua of әnu! an Ombudsman for the Hazardous Materials Programs. Section 450-8.030(B)(vii) of the Industrial Safety Ordinance requires an annual evaluation of the effectiveness of the Hazardous Materials Ombudsman, with the first evaluation to
be completed on or before October 31,2000 .
The goals of section 450-8.022 of the Industrial Safety Ordinance for the Hazardous Materials Ombudsman are:
To serve as a single point of contact for people who live or work in Contra Costa County regarding environmental health concerns, and questions and compiaints about the Hazardous Materials Programs.
To investigate concerns and complaints, facilitate their resolution, and assist people in gathering information bout programs, procedures, or issues.
3. To provide technical assistance to the puiblic.
The Hazardous Materials Ombudisman currently accomplishes these goals through the following program elements:
Continuing an outreach strategys so that the people who live and work in Contra Costa County can know
about and utilize the program.
Investigating and responding to questions and complaints, and assisting people in gathering information
about programs, procedures, or issues.
3. Participating in a network of environmental programs for the purpose of providing technical assistance.
This evaluation covers the period from November 2018 through November 2019 for the Hazardous Materials Ombudsman program. The effectiveness of the program shall be demonstrated by showing that the activities of the Hazardous Materials Ombudsman meet the goals established in the Industrial Safety Ordinance.

I. PROGRAM ELEMENTS

1. Continuing an Outreach Strategy
This period efforts were focused on maintaining the outreach tools currently available. The web page was maintained for the program as part of Contra Costa Health Services website. This page contains information about the program, links to other related websites, and information about upcoming meetings and events. A toll-free phone number is published in all three Contra Costa County phone books in the Government

2. Investigating and Responding to Questions and Complaints, and Assisting in Information Gathering

During this period, the Hazardous Materials Ombudsman received 137 information requests. Over 95 percent of these requests occurred via the telephone, and have been requests for information about environmental issues. Requests via e-mail are slowly increasing, mainly through referrals from Health Services main web page. Most of these requests concern problems around the home such as asbestos removal, household
hazardous waste disposal, pesticide misuse, mold and lead contamination.

Information requests about environmental issues received via the telephone
information requests about environmental issues received via the telephone were generally responded to
within one business day of being received. Many of the information requests were answered during the initial cali. Some requests required the collection of information or written materials that often took several days to compile. Telephone requests were responded to by telephone unless written materials needed to be sent as part of the response.

This year the Ombudsman began facilitating monthly debriefings of the Hazardous Materials Program Incident Response team incidents.

Participating in a Network of Environmental Programs for the Purpose of Providing Technical Assistance.

Technical assistance means helping the public understand the regulatory, scientific, political, and legal aspects of issues. It also means he ping them understand how to effectively communicate their concerns within these different arenas. This year, the Ombudsman continued to staff a number of
County programs and participate in other programs to be able to provide technical assistance to the participants and the public.

- CAER (Community Awareness and Emergency Response)-This non-profit organization addresses industrial accident prevention, response and communication. The Ombudsman participated in the
Emergency Notification subcommittee of CAER.

Hazardous Materials Commission-ln 2001, the Ombudsman took over as staff for the Commission. As staff to the Commission, the Ombudsman conducts research, prepared reports, drafts letters and provides support for 3 monthly Commission meetings. During this period the Commission sent letter a letter to the
Board of Supervisors concerning pipeline safety, developed the criteria for adding an ad-hoc student seat to the Commission and held a workshop on cybersecurity for businesses and government agencies.

Integrated Pest Management Advisory Committee-During this period the Ombudsman represented the Health Department on the County Integrated Pest Management Advisory Committee. This Committee
brings Department representatives and members of the public together to help implement the County"s brings Department representatives and members of the public together to help implement the County's
Integrated Pest Management policy.

Asthma Program-The Ombudsman participated in the Public Health Department's Asthma Program as a
resource on environmental health issues. The Ombudsman represented the Asthma Program on a regional collaborative related to asthma issues, the Ditching Dirty Diesel Collaborative. The Ombudsman served on the 25
echnical Advisory Board for RAMP, the Regional Asthma Management Prevention program, and supported the Public Health Department's participation in the AB 617 Community Air Quality program in Richmond. asthma. The Ombudsman completed a Technical Assistance grant with MCE, the new energy provider for 14 of the 19 jurisdictions in Contra Costa County and the Department of Conservation and Development, to develop a business plan for performing in-home asthma trigger assessments. The Ombudsman collaborated with the same partners to apply for a second Technical Assistance grant to secure stable funding for the assessment program.

Change variety of climate change issues. He completed a report with RAMP about the pilot project he conducted with the Public Health Nursing program to help their clients apply to the County's Weatherization program. The Ombudsman assisted 8 Public Health Nursing Clients complete their weatherization application. Development, hired a Civic Spark intern to expand this effort to 15 other programs in CCHS and EHSD. The Ombudsman made 9 presentations about the Weatherization program to CCHS and EHSD programs the clients of which could benefit from the program. The Ombudsman coordinated the effort to develop an Excessive Heat Response Plan for Contra Costa Health Services which was completed during the year. The Ombudsman represented the Public Health Department in local, regional and state efforts to address the廿o!jenıasuō Keg e 'ueld uo! and Development Commission-led effort to address sea level rise issues in East Contra Costa County and regionally, the Bay Area Regional Health Inequities Initiative's Built Environment committee which addresses climate change, the Contra Costa Sustainability Exchange, the California Local Health Departments Climate

Change Community of Learning, and the Delta Conservancy's Climate Action Plan Technical Advisory
Committee. The Ombudsman also made presentations to the Bay Area Regional Energy Network, the
California Public Utilities Commission and the Alameda County Public. Health Department on the connection
between energy efficiency, Climate Change and Public Health. The Ombudsman helped to evaluate the
capstone projects of the Public Health Solutions students and hosted a Public Health Solutions intern who
worked on climate change issues.
The Hazardous Materials Ombudsman also attended workshops, presentations, meetings and trainings on a variety onvironmental issues to be better able to provide technical assistance to the public. Topics included Environmental Justice, Air Quality, emergency management, energy policy and land-use planning for greenhouse gas reduction.

The Hazardous Material Ombudsman continued to report to the Public Health Director on a day-to-day basis during this period, while still handling complaints and recommendations about the Hazardous Materials Programs through the
Health Services Director. The Ombudsman was also a member of Health Services Emergency Management Team (EMT), participated in EMT trainings and drills, and participated on its HEEP management team.
IV. GOALS FOR THE 2019-2020 PERIOD
In this period, the Ombudsman will provide essentially the same services to Contra Costa residents as was provided in the last period. The Ombudsman will continue respond to questions and complaints about the actions of the Hazardous Materials Programs; answer general questions that come from the public and assist them in understanding regulatory programs; staff the Hazardous Materials Commission; represent the Public Health Department in the
Ditching Dirty Diesel Collaborative and the Integrated Pest Management Advisory Committee; and participate in the Ditching Dirty Diesel Collaborative and the Integrated Pest Management Advisory Committee; and participate in the CAER Emergency Notification committee. The Ombudsman will continue to be part of the Health Department's HEEP
During this period the Ombudsman will continue to provide technical assistance to the Public Health Department on Climate Change issues by being on the County-wide work group updating the Climate Action Plan, providing input on the BCDC regional ART project, and representing the Public Health Department on the BARHII Built Environment Committee. The Ombudsman will continue to work with collaboratives at the local, regional and state level. If the Health Department is successful in receiving the Technical Assistance grant to develop reimbursement strategies for assessing in-home asthma triggers, the Ombudsman will take a lead role in implementing the grant and applying for
funding to implement the program.

Annual Performance Review and Evaluation Submittal
June 30, 2019
"Attach additional pages as necessary

1. Name and address of Stationary Source: Air Liquide Rodeo Hydrogen Plant, 1391 San Pablo Ave., Rodeo, California 94572
2. Contact name and telephone number (should CCHMP have questions): Dave Steffens (510) 245 285×-2204
3. Summarize the status of the Stationary Source's Safety Plan and Program ($450-8.030$ (B)(2)(i)): The Rodeo SMR utilizes the programs and processes identified in the ISO Safety Program/Plan. Better execution of the Plan occurs as the organization continuousiy works to implement the different requirements.
4. Summarize Safety Plan updates (i.e., brief explanation of update and corresponding date) (450-8.030
12/1/2019.
5. List of locations where Safety Plans are/will be available for review, including contact
telephone numbers if the source will provide individuals with copies of the document (450Public Library, Crockett Public Library.
6. Provide any additions to the annual accident history reports (i.e. updates) submitted pursuant to Section 450-8.016(E)(2) of County Ordinance 98-48 (450-8.030(B)(2)(iii)) (i.e.,
 releases occurring between the last annual performance review report and the current annual performance review and evaluation submittal (12-month history)): There were no major chemical
7. Summary of each Root Cause Analysis (Section 450-8.016(C)) including the status of the analysis and the status of implementation of recommendations formulated during the analysis (450-8.030(B)(2)(iv)): There were no Root Cause Analyses performed specific to major chemical accidents or releases during the last 12 months.
8. Summary of the status of implementation of recommendations formulated during audits, inspections, Root Cause Analyses, or Incident Investigations conducted by the Department Procedure, 2) Initiatedi contractor reviews for crafts working on covered processes, 3) incorporated ISS evaluation \& change methocology into selected MOC's for the 2019 TAR.
9. Summary of inherently safer systems implemented by the source including but not limited to inventory reduction (i.e., intensification) and substitution ($\mathbf{4 5 0 - 8 . 0 3 0 (B) (2) (v i)) : ~ I n h e r e n t l y ~ S a f e r ~}$ System evaluation for the SMR was performed on $6 / 18-6 / 20 / 2019$. This requirement is captured in ISO Audit
10. Summarize the enforcement actions (including Notice of Deficiencies, Audit Reports, and any actions turned over to the Contra Costa County District Attorney's Office) taken with the Stationary Source pursuant to Section 450-8.028 of County Ordinance 98-48 (450-8.030(B)(2) (vii)): There were no enforcement actions during this period.

11. Summarize total penalties assessed as a result of enforcement of this Chapter (450-8.030(3)): No penalties have been assessed against this facility.
12. Summarize the total fees, service charges, and other assessments collected specifically for the support of the ISO (450-8.030(B)(4)): The total CaIARP Program fees for the eight facilities subject to the Industrial Safety Ordinance was $\$ 822,604$. The total Industrial Safety Ordinance program fees for these eight
facilities was $\$ 578,390$. (NOTE: These fees include those for the County and City of Richmond ISO facilities).
13. Summarize total personnel and personnel years utilized by the jurisdiction to directly
implement or administer this Chapter ($450-8.030(B)(5)): 3,828$ hours were used to audit/inspect and issue reports on the Risk Management Chapter of the Industrial Safety Ordinance.
14. Copies of any comments received by the source (that may not have been received by the
Department) regarding the effectiveness of the local program that raise public safety issues(450-8.030(B)(6)): None
15. Summarize how this Chapter improves industrial safety at your stationary source (450-
$8.030(B)(7)$: This chapter reinforces the need to maintain, follow, and continuously improve our structured safety
program to help ensure the safety of our employees and the community in which we operate.
16. List examples of changes made at your stationary source due to implementation of the Industrial Safety Ordinance (e.g., recommendations from PHA's, Compliance Audits, and Incident Investigations in units not subject to CalARP regulations; recommendations from
RCA's) that significantly decrease the severity or likelihood of accidental releases. (1) Completed our first round of contractor safety audits in 2018 , with the next round of contractor safety audits to be completed in 2019, 2) Working to conduct a Site Safety Assessment to be completed after the 2019 TAR. This assessment will include input from the majority of contractors working during the TAR, 3) Risk Management is incorporating ISS
methodology at other Air Liquide PSM lacations. methodology at other Air Liquide PSM lacations.

[^10]Past due PHA recommended actions, includes seismic and LCC recommended actions 2018 Overdue Repeat
 \backsim

$$
{ }_{34}
$$
Past due investigation recommended actions

2018	Overdue	Repeat
January	0	0
February	0	0
March	0	0
April	0	0
May	0	0
June	0	0
July	0	0
August	0	0
September	0	0
October	0	0
November	0	0
December	0	0

for API/ACC Tier 1 and Tier 2 incidents

12. Summarize the total fees, service charges, and other assessments collected specifically for the support of the ISO $(\mathbf{4 5 0}-8.030(8)(4))$: The total CaIARP Program fees for the eight facilities subject to the
Industrial Safety Ordinance was $\$ 1,006,798$. The total Industrial Safety Ordinance program fees for these eight facilities Industrial Safety Ordinance was $\$ 1,006,798$. The total Industrial Safety Ordinance program fees for these eight facilities
was- $\$ 535,535$. (NorE: These fees inciude those for the County and City of Richmond ISO facilities). 13. Summarize total personnel and personnel years utilized by the jurisdiction to directly
13. Summarize total personnel and personnel years utilized by the jurisdiction to directly
implement or administer this Chapter (450-8.030(B)(5)): 3,828 hours were used to audit/inspect and
issue reports on the Risk Management Chapter of the Industrial Safety Ordinance.
14. Copies of any comments received by the source (that may not have been received by the
Department) regarding the effectiveness of the local program that raise public safety

Department) regarding the effectiveness of the local program that raise public safety
issues($450-8.030(\mathrm{~B})(6)$): None. 15. Summarize how this Chapter im
15. Summarize how this Chapter improves industrial safety at your stationary source ($450-8.030(8)(7)$): Air Products is committed to the safer operation of our facilities and has implemented applicable requirements outlined in
the ISO and CaIARP regulations. Both the ISO and Human Factors programs are an integral part of our five year Operating Hazard Review revalidations and ongoing management of change process. The most recent OPHR was conducted in for April 2018. There have been no incidents resulting in an offsite impact. The Chapter has helped reinforce the need to maintain and follow a structured safety program to heip ensure the safety of our empoloyees and the communities in
which we operate.
16. List examples of changes made at your stationary source due to implementation of the Industrial Safety Ordinance (e.g., recommendations from PHA's, Compliance Audits, and Incident Investigations in units not subject to CalARP regulations; recommendations from RCA's) that
significantly decrease the severity or likelihood of accidental releases.
significantly decrease the severity or likelihood of accidental releases.
The Air Products facilly is tracking varlous metrics (ieading and lagging). These inciude those called out in ISO APVACC
Tier 1 and 2 events, past due PHA recommendations and past due incident investigation recommendations. A baseline was Tier 1 and 2 events, past due PHA recommendations and past due incident investigation recommendations. A baseline was
developed and metrics are tracked for the facility on a company share site.
17. Summarize the emergency response activities conducted at the source (e.g., CWS or TEN activation) in response to major chemical accidents or releases: There were no emergency response
activities to this site.
18. Date the last Safety Culture Assessment was completed: January 2015 Survey method:
August 2019 .
19. Date the results of the Safety Culture Assessment were reported to the workforce and

20. Answer the following regarding the Safety Cuiture Evaluation previous to the one listed in 18: Survey methoci: Electronic
Areas of improvements being
Areas of improvements being addressed: Quality of APT, improving field safety contact among regional
engineering support, better implementing safety drills in the JSA process, and improvement in the shift logs Action Plan made Progress on the identified areas of improvement?: (Yes or No) No
22. Describe the process that included employees and their representatives used to determine the development of the survey, collection of the data, analysis of the data, and distribution of the findings. Additionally, the same team of cross functional employees were responsible for developing the action plan, and double clicking on the potential areas for improvement. Steps were taken to develop SMART goals. 23. Date of the mid-cycle progress evaluation: Target completion in the August 2021 timeframe 24. Describe the process that included participation of employees or their representatives used to determine whether the action items from the SCA and the mid-cycle progress effectively
changed the expected cultare items: Not applicable. being done to meet the goals?

- If No, has a new action plan been
action plan has been developed
Have milestones and metrics be
Assessment actions are being imp
part of recurring meeting focused on
Assessment actions are being implemented? No. Currently under development. Actions are tracked as
part of recurring meeting focused on implementation of the actions. 21. Have milestones and metrics been developed to determine how the Safety Culture
If No, has a new action plan been developed to address the identified areas of improvement? Yes, and
If Yes, did the improvements meet the goals and if not was the action plan amended to address what is
being done to meet the goals? action plan has been developed with routine check ins to determine the effectiveness of the actions.
\Rightarrow

Annual Performance Review and Evaluation Submittal
June 30, 2019

Attach additional pages as necessary

1. Name and address of Stationary Source:

 Air Products Marathon Martinez Refinery, 150 Solano Way, 3rd \& F Streets, Inside Tesoro Refinery, CA 945532. Contact name and telephone number (should CCHMP have questions):
Joseph Delengowski $925-316-9415$
3. Summarize the status of the S
. Summarize the status of the Stationary Source's Safety Plan and Program ($\mathbf{4 5 0 - 8 . 0 3 0 (B) (2)}$
(i)): The stationary source's safety plan is complete per the CCHS requirement. The program was audited in January 2018 by CCHS as part of the three year CCHS site audit, and in October 2015 as part of an unannounced
inspection. inspection.
4. Summarize Safety Plan updates (i.e., brief explanation of update and corresponding date) $(450-8.030(B)(2)(i i)):$
5. List of locations whe
6. List of locations where Safety Plans are/will be available for review, including contact elephone numbers if the source will provide individuals with copies of the document (450-
$8.030(B)(2)$ (ii)): CCHMP Office at 4585 Pacheco Boulevard, Suite 100 , Martinez: Martinez Library (libraries closest to the stationary source).
 provide information identified in Section 450-8.016(E)(1) for all major chemical accidents or releases occurring between the last annual performance revlew report and the current annual performance review and evaluation submittal (12-month history)): There were no major accidents or injuries to report.

Summary of each Root Cause Analysis (Section $\mathbf{4 5 0 - 8 . 0 1 6 / C)}$) including the status of the
analysis and the status of implementation of recommendations formulated during the analysis (450-8.030(B)(2)(iv)): There are no outstanding recommendations.
8. Summary of the status of implementation of recommendations formulated during audits, Inspections, Root Cause Analyses, or Incident Investigations conducted by the Department
$(450-8.030(\mathrm{~B})(2)(\mathrm{v})$): Final recommendations from the 3 year CCCHS audit are in progress.
9. Summary of inherently safer systems implemented by the source including but not limited to inventory reduction (i.e., intensification) and substitution (450-8.030(B)(2)(vi)):
0. Summarize the enforcement actions (including Notice of Deficiencies, Audit R any actions turned over to the Contra Costa County District Attorney's Office) taken with the (vii)): There were no enforcement actions during this period
11. Summarize total penalties assessed as a result of enforcement of this Chapter (450-8.030(3)):
No penalities have been assessed against this facility.
12. Summarize the total fees, service charges, and other assessments collected specifically for the support of the ISO ($\mathbf{4 5 0 - 8 . 0 3 0 (B) (4)) \text { : The total CaIARP Program fees for the eight facilities subject to the }}$ Industrial Safety Ordinance was $\$ 1,006,798$. The total Industrial Safety Ordinance program fees for these eight facilities
was $-\$ 535,535$. (NOTE: These fees include those for the County and City of Richmond ISO facilities).
13. Summarize total personnel and personnel years utilized by the jurisdiction to directly
implement or administer this Chapter (450-8.030(B)(5)): 3,828 hours were used to audit/inspect and
14. Copies of any comments received by the source (that may not have been received by the

Copies of any comments received by the source (that may not have been received by
Department) regarding the effectiveness of the local program that raise public safety
issues($450-8.030(B)(6))$: None.
15. Summarize how this Chapter improves industrial safety at your stationary source ($450-8.030$ (B)(7)): Air Products is committed to the safer operation of our faciities and has implemented appicable and CaIARP regulations. Both the ISO and Human Factors programs are an integral part of our five year Operating Hazard Review revalidations and ongoing management of change process. The most recent OPHR was completed in Aprii 2018, and attended by CCHS personnel. There have been no incidents resulting in an offsite impact. The Chapter has
helped reinforce the need to maintain and follow a structured safety program to help ensure the safety of our empoloyees and the communities in which we operate.
16. List examples of changes made at your stationary source due to implementation of the Industrial

Safety Ordinance (e.g., recommendations from PHA's, Compliance Audits, and Incident
Investigations in units not subject to CaIARP regulations; recommendations from RCA's) then
significantly decrease the severity or likelihood of accidental releases.
The Air Products facility is tracking various metrics (leading and lagging). These include those called out in ISO API/ACC
Tier 1 and 2 events, past due PHA recommendations and past due incident investigation recommendations. A baseline was developed, and metrics are tracked for the faciility on a company share site.
17. Summarize the emergency response activities conducted at the source (e.g., CWS or TEN activation) in response to major chemical accidents or releases: There were no emergency response the emergency response team was deployed in response to a series of personal medicals that resulted in the the emergency response team was deployed in response to a series of personal medicals that resulted in the
individual being treated for non-work related conditions. Each each condition, the response tinee was stellar.

18. Date the last Safety Culture Assessment was completed: August 2019.

9. Date the results of the Safety Culture Assessment were reported to the workforce and management:
10. Answer the following regarding the Safety Culture Evaluation previous to the one listed in 18 : Survey

If No, has a new action plan been developed to address the identified areas of improvement? Yes, and
action plan has been developed with routine check ins to determine the effectiveness of the actions.
21. Have milestones and metrics been developed to determine how the Safety Culture Assessment actions are being implemented? No.
22. Describe the process that included employees and their representatives used to determine if the action iterns effectively changed the expected culture items: Employees were involved in the development of the
survey, collection of the data, analysis of the data, and distribution of the findings. Additionally, the same team of cross functional employees were responsible for developing the action plan, and double clicking on the potential areas for improvement. Steps were taken to develop SMART goals.
23. Date of the mid-cycle progress evaluation: Target completion in the August 2021 timeframe
24. Describe the process that included participation of empioyees or their representatives used to determine whether the action items from the SCA and the mid-cycle progress effectively changed the
expected culture items: Not applicable.
25. Common Process Safety Performance Indicators:
\%

Past due investigation recommended actions for API/ACC Tier 1 and Tier 2 incidents

2018 Overdue Repeat

,

000000000000

```
O
    O
```

 February
 March
 April
 May
June
August
September
November
December

inspections, Root Cause Analyses, or Incident Investigations conducted by the Department $(450-8.030(B)(2)(v)):$ TThere is one "ensure" item and one "consider" item remaining from the 2017 CaIARP ISO
audit. Both items will be closed with the 201.9 revision to the Risk Management Plan.
9. Summary of inherently safer systems implemented by the source including but not limited to inventory reduction (i.e., intensification) and substitution (450-8.030(B)(2)(vi)): See ATTACHMENT 10. Summarize the enforcement actions (including Notice of Deficiencies, Audit Reports, and
any actions turned over to the Contra Costa County District Attorney's Office) taken with the
Stationary Source pursuant to Section $450-8.028$ of County Ordinance $98-48(450-8.030(B)(2)$ Stationary Source pursuant to Section 450-8.028 of County Ordinance 98-48 (450-8.030(B)(2)
(vii): There were no enforcement actions during this period.
11. Summarize total penalties assessed as a result of enforcement of this Chapter (450-8.030(3)): No penalities have been assessed against this facility.
12. Summarize the total fees, service charges, and other assessments colliected specifically for the support of the ISO (450-8.030(B) (4)): The total C.IARP Program fees for the eight facilities subject to the Industrial Safety Ordinance was $\$ 1.006,798$. The total Industrial Safety Ordinance program fees for these eight facilities
was $\$ 535,535$. (NOTE: These fees includie those for the County and C.ity of Richmond ISO facilities).
13. Summarize total personnel and personnel years utilized by the jurisdiction to directly
implement or administer this Chapter (450-8.030(B)(5)): 3,828 hours were used to audit/inspect and
issue reports on the Risk Management Chapter of the Industrial Safety Ordinance.
14. Copies of any comments received by the source (that may not have been received by the
Department) regarding the effectiveness of the local program that raise public safety
15. Summarize how this Chapter improves industrial safety at your stationary source (450$8.030(B)(7))$: In addition to the Phillips 66 Corporate Health Safety Environment Management Systems the ISO
16. List examples of changes made at your stationary source due to implementation of the Incident Investigations in units not subject to CalARP regulations; recommendations from RCA's) that significantly decrease the severity or likelihood of accidental releases. Units that
 system improvements, required by the ISO for PHA recommendations and projects, are listed in Attachment 1.
17. Summarize the emergency response activities conducted at the source (e.g., CWS or TEN

Annual Performance Review and Evaluation Submittal
June 30,2019

AAttach additional pages as necessary

1. Name and address of Stationary Source: Phillips 66 Rodeo Refinery, 1380 San Pablo Avenue, Rodeo, CA 94572

2. Contact name and telephone number (should CCHMP have questions): Morgan Walker 510-245-4665
3. Summarize the status of the Stationary Source's Safety Plan and Program (450-8.030(B)(2)(i)): The Safety Plan was last updated in August of 2018
4. Summarize Safety Plan updates (I.e., brief explanation of update and corresponding date) (450-8.030(B)(2)(iii)): The original Safety Plan for this facility was filed with Contra Costa Health Services on January 14, 2000. A revised plan was filed on April 7,2000 with the updated recommendations requested by CCHS. A Human Factors Amendment was submitted on January 15, 2001. In conjunction with CCHSS required $2^{\text {rd }}$ public meeting on our plan and audit findings, we submitted a complete revision of the plan to reflect the change in
ownership of our facility and to update where needed. We took this opportunity to include H Human Factors within the plan instead of having it as an amendment. On August 9,2002 the plan was res ubmitted. Public meetings for our plans were held on June 22,2004 in Rodeo and July 8,2004 in Crockett. As required the Plan was fully with recommended changes. The Safety Plan was updated in July 2009 per the 3 year cycle.. Recommendations requested by CCHMP were incorporated into the Safety Plan on November 4, 2010. Safety Plan was updated in August 2012 and August 2015 per the 3 year reycle. Recommendations requested by CCHMP on May 22,2017
were incorporated into the plan on August 4 , 2017. An updated Safety Plan was submitted in August 2018.
5. List of locations where Safety Plans are/will be available for review, including contact
telophone numbers if the source will provide ind ividuals with copies of the document (450 $8.030(\mathrm{~B})(2)$ (iii): : CCHMP Office at 4585 Pacheco Boulevard, Suite 100, Martinez; Crockett and Rodeo Libraries
(closest to the stationary source).
6. Provide any additions to the annual accident history reports (i.e. updates) submilted
pursuant to Section $450-8.016(\mathrm{E})(2)$ of County Ordinance $98-48(450-8.030(\mathrm{~B})(2)$ (iii) (i (.e., releases occurring between the last annual performance (Eview major chemical accidents or performance review and evaluation submittal (12-month history)): There were no major chemical accidents or releases at the Rodeo Refinery in the 2018-2019 time period.
7. Summary of each Root Cause Analysis (Section $450-8.016$ (C)) including the status of the analysis
(2)(iv)): There were no root cause analysis of major chemical accidents or releases at the Rodeo Refinery in the 2018-2019 time period.
8. Summary of the status of implementation of recommendations formulated during audits,

Total number of circuits:2 22,424
Total number of annual planned
Past due PHA recommended actions, includes seismic and LCC recommended actions

$\begin{array}{lrr}\text { January } & \text { Overaue } & \text { Repeat } \\ \text { February } & 0 & 0 \\ \text { March } & 0 & 0 \\ \text { April } & 0 & 0 \\ \text { May } & 0 & 0 \\ \text { June } & 0 & 0 \\ \text { July } & 0 & 0 \\ \text { August } & 0 & 0 \\ \text { September } & 0 & 0 \\ \text { October } & 0 & 0 \\ \text { November } & 0 & 0 \\ \text { December } & 0 & 0 \\ & 0 & 0\end{array}$
$\stackrel{\oplus}{*}$
activation) in response to major chemical accidents or releases: There were no major chemical accidents or
releases at the Rodeo Refinery in the 2018-2019 time period.
9. Date the last Safety Culture Assessment was completed: $4 / 15 / 2016$ Survey method: written survey
10. Date the results of the Safety Culture Assessment were reported to the workforce: $6 / 24 / 16$

SURVEY METHOD: written survey
Areas of improvements being addressed:

* No areas were identified as scoring sigsiaprovernents require too many reviews/aprovals.

Empees are relulifien
A. Having enough qualified people to do the work in their area.

If Yes, did the improvements meet the goals and if not, was the action plan amended to address
what is being done to meet the goals? Yes, Progress was made and improvements observed in the subsequent SCA. Improvement opportunities were identified in the most recent SCA and recommendations
identified.
If No , has a n

[^11]22. Describe the process that included employees and their representatives used to determine if the action items effectively changed the expected cuiture items: A midcycle written surver will be utilized to
evaluate the effects on the culture. The evaluation team will include management and union representatives per policy.
23. Date of the mid-cycle progress evaluation: Scheduled in 2019
23. Did the action plan (for no 18) make progress on the identified areas of improvement? Yes or if not, has a new action pan been developed? (Yes or No) (to be determined)
24. Describe the process that included participation of employees or their representatives used to the expected culture items: By policy, our process will include management and union representatives to review the results and develop modified recommendations as appropriate.
25. Common Process Safety Performance Indicators:

M2019308-001	Moderate	Inherent	Replaced butane cooler cooling water return with upgraded metallurgy pipe.
M20181236-001	Maderate	Inherent	Upgraded metallurgy case installed on ©-116C pump.
M20176355-001	Moderate	Inherent	Upgrade E-206 Sait Water Outtet Spool Piece to Monel.
M20176004-001	Moderate	Inherent	Upgrade DSO Piping on Merichem to 316L SS
M20175710-001	Moderate	Inherent	F-302 Froth Chute Metallurgy Upgrade
M20175686-001	Moderate	mherent	E-303 Bunule Metallurgy Upgrade from carbon steel to stainlesa ateel.
M20173980-001	Moderate	Inherent	Upgrade G-221 Jet Pump Bypass Spool Pleco to Incenel 625
M20173012-001	Moderate	Inherent	Upgrade D-601 Overhend Vapor Bypass Line from earbon steel to C276 overiay carbon steel.
M20172446-001	Moderate	Inherent	Upgrade F-540 Brides to 3i8 SS
M20172359-001	Moderate	Inherent	Replacement of F-805 with 304SS
M20171966-001	Moderate	Inherent	Upgrade the exchanger metallurgy to 317 LSS to provide resistance to naphthenic acid as well as high temperature suflidation.
M20177704-002	Moderata	Panaive	Upgrade U215/U267 Naphtha Sample Stations to Clased Loop
M20165957-001	Moderate	Pasive	Upgrade U250 D-713 and D-714 Sample Stations to Closed Loop
M20101727-005	Moderate	Pasaive	Upgrade ample stations D2018, D-202, and D-203 efluent and rec. gas
M20176265-001	Moderate	Passive	Change Amine Service Fin Fan Tube Plug Gasket Type
M20184089-002	Stmplity	Aetivo	Upgrade B-101 and B-102 Heater O2 Analyzers.

Attachment 1: June 2017-June 2018 ISS improvements			
neterster	Apmesth	ars exterery	wop Pimimusm
IMP226913	Moderate	Penaive	Heat exchanger had been re-rated tone w/ process design conditions-this addresses the PHA recommendation. AAf pertinent PSI information is to refiect the new conditions.
IMP226903	Moderato	Pansive	Fiping has been re-rated, whlch addresses the LOPA recommendation.
IMP228891	Moderate	Pansive	Secondary containment built for F-256 Sillcone Tank.
1MP232568	Simplify	Pansive	SIL calcuiations performed to provide additional IPLS to protact against a fuel itch frebox in 日-1 Heater.
IMP226567	Simplily	Paudive	The plping on the pump-outline was extended so that the valve on the pump-outine and the adjacent valve do not create a pinch point.
1MP232562	Moderats	Procedural	New procedure added to limit loaned rate 5 minutes belore shutdown to minimize lithng rellef valves.
IMP232563	Moderate	Inhorent	Added check valves to critical Check Valve List and removing three out of service valves.
IMP226849	Moderate	Passiva	A closed loop sampling station was installed with septum-capped bottles to minimize operator exposure to high H 2 S vapors.
IMP227554	Simplify	Procedural	New alarms added to address 8 HAZOP recommendations and 45 LOPA recommendations.
IMP220030	Moderate	Active	Two new SLL-1 rated shutdowns added to prevent accurmulation of unburned fuel in B-1 firebox after a loss of fuel gas or pillot gis.
IMP226880	Moderato	Active	Installed redundant independent level indicator and alarm on F-57 Phase Separator to notity operators of potential sour gas release.
IMP226845	Moderato	Active	Installed new shutdowi trip volling logic (1004) to prevent potontial tube fallure frem low flow condtitions in B-202 Convection heater.
IMP226874	Stmplity	Procedural	Revised locked open vilve list to decrease likelihood for human error.
IMP226848	Minimize	Passiva	Installed cover on E-101A/B/C to protectoperators from potential exposure to hot water and H 2 S In the event of tube leak or increased temperature.
IMP227551	Moderata	Active	Inatalied two new PSV to provide enhanced overpressure protection to G-811A/B pump discharge piping.
IMP226848	Minimize	Pansive	Installed dual mechanical zeals with API Plan 538 sealing system on Stebilizer Feed Pumpe $5 g-503 \mathrm{~A} / \mathrm{B}$ to reduce the likellhood of losa of containment.

Annual Performance Review and Evaluation Submittal "Attach additional pages as necessary

1. Name and address of Stationary Source: Shell Oil Products U.S. Martinez Refinery, 3485 Pacheco Blvd., Martinez, CA 94553
2. Contact name and telephone number (should CCHMP have questions): Nicola Maher: 925-229-6175
 SMR's Safety Plan was last updated in August 2016. SMR's Safety Plan is due for update in August 2019.
3. Summarize Safety Plan updates (i.e., brief explanation of update and corresponding date) (450-8.030(B)(2)(iii): SMR's Safety Plan was last updated in August 2016. The changes addressed actions from
the CCHS 2015 audit. SMR's August 2019 submittal will address actions from the CCHS 2018 audit. the CCHS 2015 audit. SMR's August 2019 submittal will address actions from the CCHS 2018 audit.
4. List of locations where Safety Plans are/will be available for review, including contact telephone numbers if the source will provide individuals with copies of the document (4508.030(B)(2)(ii)): CCHMP Office at 4585 Pacheco Boulevard, Suite 100, Martinez; Martinez Library (library elosest to the stationary source).
5. Provide any additions to the annual accident history reports (i.e. updates) submitted
provide information identified in Section 450-8.016(E)(1) for all major chemical accidents or releases occurring between the last annual performance review report and the current annual performance review and evaluation submittal (12-month history)): There was one MCAR for the reporting period on July, 6 2018, Release at LOP (Light Oil Processing) Flare.
6. Summary of each Root Cause Analysis (Section 450-8.016(C)) including the status of the analysis and the status of implementation of recommendations formulated during the analysis (450-8.030(B) CCHMD. Four actions are open and on schedule for $1 / 2020$ completion. All other actions (37) were completed as scheduled.
7. Summary of the status of implementation of recommendations formulated during audits, $(450-8.030(B)(2)(v))$: T2018 County ISO/CaIARP audit action items have been finalized and final responses sent June 2019. Due dates for action items accepted by County. Approximately 40% of action items complete. Remaining action items to be completed per agreed upon schedule.

[^12]. Summarize the enforcement actions (including Notice of Deficiencies, Audit Reports, and any actions turned over to the Contra Costa County District Attorney's Office) taken with the Stationary Source pursuant to Section 450-8.028 of County Ordinance 98-48 (450-8.030(B)(2) (vii)): There were no enforcement actions during th ${ }^{3}$ period.
12. Summarize the total fees, service charges, and other assessments collected specifically for the support of the ISO ($\mathbf{4 5 0 - 8 . 0 3 0 (B) (4)) \text { : The total CalARP Program fees for the eight facilities subject to the }}$ was- $\$ 535,535$. (NOTE: These fees indude those for the County and City of Richmond ISO facilities).
13. Summarize total personnel and personnel years utilized by the jurisdiction to directly
implement or administer this Chapter (450-8.030(B)(5)): 3,828 hours were used to audit/inspect and issue reports on the Risk Management Chapter of the Industrial Safety Ordinance.
14. Copies of any comments received by the source (that may not have been received by the

Department) regarding the effectiveness of the local program that raise public safety
15. Summarize how this Chapter improves industrial safety at your stationary source (450$8.030(B)(7)$: SMR has integrated requirenents of the Industrial Safety Ordinance into our Health, Safety, improvement in our HSE performance.
16. List examples of changes made at your stationary source due to implementation of the Industrial Safety Ordinance (e.g., recommendations from PHA's, Compliance Audits, and RCA's) that significantly decrease the severity or likelihood of accidental releases. All process units are now covered under CalARP Program 4. Examples of changes made to the stationary source are summarized in Table 1 (see question 9).
17. Summarize the emergency response activities conducted at the source (e.g., CWS or TEN Shell activated the Emergency Operations Center, which brings together Environmental, Health \& S e foty, Security Operations, and Management to assist in coordinating the response. In addition, Shell's Community Sampling Team was deployed to the community to monitor for potential offsite impacts (noise, odors, etc). The refinery's Ground Level Monitors located on the facility fence-line showed no detection of H 2 S or SO 2 above background levels and the community sampling did not detect any offsite readings.
18. Date the last Safety Culture Assessment was completed: $3 / 31 / 19$ (survey conducted $Q 4,2018$) 19. Date the results of the Safety Culture Assessment were reported to the workforce and management: 4/10/19 and beyond (4/24/19 sitewide distribution, various meetings to discuss results). 20. Answer the following regarding the Safety Culture Evaluation for no. 18:

Survey method: Amonymous computer based and paper based survey
Areas of improvements being addressed: Incident reporting and Learnings from incidents and Rewards and Recognition

Summarize total penalties assessed as a
No penalities have been assessed against this facility.

11. Summarize total penalties assessed as a result of enforcement of this Chapter ($450-8.030(3)$):

Past due investigation recommended actions
. Number of Major Incidents in 2018: 0
26. Process Safety Performance Indicators for refineries only:
I. The number of temporary piping and equipment repairs that are installed on hydrocarbon repair:

2018	Overdue	Repeat
January	0	0
February	0	0
March	0	0
April	0	0
May	0	0
June	0	0
July	0	0
August	0	0
September	0	0
October	0	0
November	0	0
December	0	0
TOTAL	0	0

January
February
March
May
June
August
September
November
December
TOTAL

[^13]${ }^{2}$ Petroleum refineries to report publically available refinery mean for API Tier 1 and Tier 2 classification.
\[

$$
\begin{aligned}
& \text { Chemical plants to report publically available mean only for } \\
& \text { * Refinery Industry rates or means are not publicly available. }
\end{aligned}
$$
\]

Chemical plants to report publically available mean only for ACC Tier 1

Table 1: Continued	
2mpaet	wac Destum.ar
2nd order inherentModerat	Upgraded acid boot Ptping from vessel in Alkylation unit
Inherent/Simplity	Replaced sight glass with a magnetic level indicator on a vessel in the Flexicooker unit
2nd order inherent/Moderate	Upgraded piping spool metallurgy in Hydragen Plant.
$\begin{gathered} \text { 2nd order } \\ \text { inherent/Maderate } \end{gathered}$	Upgraded reclalmer pump 0 -ring in amine service.
2nd order inherent/Moderate	Metal Gasket Morification and upgrade in Gat Cracker Unit.
2nd order inherent/Moderate	Upgraded Lube Oil Filler Housing and added pressure indication in Logistics.
2nd order inherent/Moderate	Upgraded pump 0-ring materia in Straight Run Hydroteater plant.
$\begin{gathered} \text { 2nd order } \\ \text { inherent/Moderate } \end{gathered}$	Upgraded metallurgy of Spent Acid Line in Allylation Unit
2nd order inherent/Moderate	Upgraded Metalurgy and design of piphing for the fiare llotiting system in LOP
Procedural/Simplify	Change in Start-up proeedure for COO Bollers in Uiluties
Procedural/Simplify	Change in loading procedure in Tank Storage Area
Procedural/Simpliy	Change in draining process to reduce draining in Tank storage area.
Procedural/Moderate	Change in fuel gas treater procedure to reduce set points and update step

Attachment 1

Table 1: Summary of Implemented ISS	
Apresat	unc Dasarvisar
ActiveMModerate	Added Hill Level Alarms to HP and LP Blowdown Drums in Uuilitt
2nd order inherent/Moderate	Upgraded the metalurgy in heator in Allynntion Plant
2nd order inherent/Moderate	Replaced cyclone trickle valves for the reactor with upgraded metallurgy in the $\mathrm{Cat}_{\text {at }}$ Cracker Plant
2nd order Inherent/Moderata	Upgraded metalurgy on Identified plping in the Cat Gas Hydrotreater Plant
2nd order inherent/Moderate	Upgraded metallurgy in pump Case in Hydrocracker Plant
2nd order inherent/Moderata	Upgraded P2951 Seal Bellows Assembly Retaining Band Material In Hydrocracker Plant
2nd order inherent/Moderate	Upgraded disaster bushing in seal for ceustic recycle pump in Sat Gas Plant.
Inherent/Simplify	Hydrogen and Corrosion Probes Removed in the Delayed Coker Unit
Active/Simplify	Installed actuated interlocked valves to coke drums in Delayed Coker Unit to reduce opportunity for human error
Activ/Moderate	Upgraded DCU Wet Gas Compressor Control System in the Delayed Coker Unit
2nd order Inherent/Moderate	Heater Metallurgy Upgraded and De-rate in the Distillate Hydrotreater
Active/Moderate	Installed vibration shutdown system on Distillation Hydrotreater compressors.
Activemoderate	Installed trip systems for high CO/CH4 TDL on 14 heaters across site
Active/Moderate	Installed Foam System on tank in tank farm
2nd order InheremtMorderate	Upgraded Main Frac Slurry Piping Metallurgy in Cat Cracker Unit
Active/Moderate	Added Seal Oil Flow Indication in Sat Gas Plant
2nd order inherent/Moderate	Upgraded pump material Ior pumps in Alkylation Unit
2nd order inherent/Moderete	Upgraded Mechanical Seal O-ring for pumps in Alkylation service
2nd order inherent/Moderate	P2195 Materiats Upgrade and Flush Modification
2nd order inherent/Moderate	Upgraded metallurgy for stripper reflux pumps in Sulfur Recovery Unit
2nd order inherent/Moderate	Upgraded pump seal in Logistics

Annual Performance Review and Evaluation Submittal
June 30, 2019

*Attach additional pages as necessary 94553

1. Name and address of Stationary Source: Tesoro Golden Eagle Refinery, 150 Solano Avenue, Martinez. CA
2. Contact name and telephone number (should CCHS have questions): James Jeter 925-370-3279 or Sabiha Gokcen at 925-370-3620.
3. Summarize the status of the Stationary Source's Safety Plan and Program (450-8.030(B) (2)(i)): The most recent Safety Plan was sumitted to Contra Costa Hazardous Materials Program (CCHMP) in June
4. CCHMP has compelted seven audts on the safety programs. The first audit was in September 2000 on the Safety programs. The second audit was in December 2001 and focused on Inherently Safer Systems and Hurnan Factors. CaIARP/ISO audits were conducted in August 2003, November-December 2005, August-Octaber 2008, April-May 2011, January, 2014 and most recently October 2016. All safety program elements required by the ISO have been developed and are implemented.
5. Summarize Safety Plan updates (i.e., brief explanation of update and corresponding date) (450$8.030(B)(2)$ (ii)): TThe original Safety Plan for this facilit y was filed with CCHMP on January 14, 2000. An amended plan, updated to reflect CCH S recommendations and ownership change, was filed on November 30, 2000. A Human Supervisor request, on June 1, 2001. An amended Safety Plan, updated to reflect ownership change was submitted on June 17, 2002.

The Safety Plan for this facility is updated whenever changes at the facility warrant an update or every three years. In addition, the accident history along with other information is updated every year on June 30 in the Annual ISO Update to CCHMP. The most recent Safety Plan was submitted in June, 2017.
5. List of locations where Safety Plans are/will be available for review, including contact 8.030(B)(2)(ii)): CCHMP Office at 4585 Pacheco Boulevard, Suite 100, Martinez; Martinez Library (library closest to the stationary source).
6. Provide any additions to the annual accident history reports (i.e. updates) submitted pursuant:
to Section 450-8.016(£)(2) of County Ordinance 98-48 (450-8.030(B)(2)(iii)) (i.e., provide occurring between the last accident history report submittal (January 15) and the annual performance review and evaluation submittal (June 30)): There have been no MCARS during the last year.
7. Summary of each Root Cause Analysis (Section $450-8.016(C)$) including the status of the
analysis and the status of implementation of recommendations formulated during the analysis
(450-8.030(B)(2)(iv)) Status of Root Cause Analysis Pecommendations: The recommended action tiems for all MCARs are closed.
> 8. Summary of the status of implementation of recommendations formulated during audits, inspections, Root Cause Analyses, or Incident Investigations conducted by the epartinent (450-8.030(B)(2)(V)): "CCHS Informaton": CCHS completed an audit on September 15, 2000. December 2001, August 2003, November/December 2005. August-October 2008. April-May 2011, the Department.
> the Department.
Facility status of audit recommendations: Al! recommendations from CCHMP audits prior to 2016 are
> closed. here are 3 open audit recommendations from the 2016 audit which are on target regarding due date
9. Summary of inherently safer systems implemented by the source including but not.
limited to inventory reduction (l.e., intensification) and substitution (450-8.030(B)(2)(vi)): Passive levels only and that were completed within the last year (see attached).
10. Summarize the enforcement actions (incfuding Notice of Deficiencies, Audit Reports, with the Stationary Source pursuant to Section 450-8.028 of County Ordinance 98-$48(450-8.030(B)(2)(v i i))$: There were no enforcement actions during this period.
11. Summarize total penalties assessed as a result of enforcement of this Chapter (4508.030(3)): No penalities have been assessed against this facility.
12. Summarize the total fees, service charges, and other
12. Summarize the total fees, service charges, and other assessments collected specifically for the eight facilities subject to the Industrial Safety Ordinance was $\$ 1,006.798$. The total Industrial Safety Ordinance program fees for these eight facilities was--\$535,535. (NOTE: These fees include those for the
County and City of Richmond ISO facilities).
13. Summarize total personnel and personnel years utilized by the jurisdiction to directly used to audit/inspect and issue reports on the Risk Management Chapter of the Industrial Safety Ordinance.
14. Copies of any comments received by the source (that may not have been received by the Department) regarding the effectiveness of the local program that raise public safety
issues (450-8.030(B)(6)): This facily has not received any comments to date regarding the effectiveness issues(450-8.030(B)(6)): This facilty has not received any comments to date regarding the effectiveness
of the local program.
15. Surmmarize how this Chapter improves industrial safety at your stationary source (A508.030(B)(7)): Chapter 450-3 improves industrial safety by expanding the safety programs to all units in the refinery. In addition, the timeframe is shorter to implement recommendations generated from the Process
Hazard Analysis (PHA) safety program than state or federal law. This has resulted in a faster implementation of these recommendations.
If No , has a new action plan been developed to address the identifice areas of improvement? (Yes or No)
21. Have milestones and metrics been developed to determine how the Safety Culture Assessment actions are being Implemented? Yes or if not, Why not? Yes
22. Describe the process in place that includes emplo
22. Describe the process in place that includes employees and their representatives that will determine if survey from the 3rd party consultant, the PSM Superintendent and USW Process Safety Representative reviewed the data and recommendations from the consultant in great detail as well as the 2013 survey. A preliminary action plan was developed from the in-depth analysis. The consultant's report and the preliminary action plan were reviewed with management, the Jt. H\&S Committee and the union negotiation committee for input. In addition, the USW Process Safety Representative held several sessions with USW leadership to review the data in more detail. After this process was completed, it was determined the preliminary action plan was the final action plan.
23. Date of the mid-cycle progress evaluation: 2019 for SCA dated 2016

Did the action plan (for no 18) make progress on the identified areas of improvement? NIA midcycle scheduled
for this year Yes or if not, has a new actiom pan been developed? (Yes or Noi) N/A
24. If a mid-cycle progress evaluation was performed during this reporting year, describe the process that included participation of employees or their representatives that determined whether the action items action plan. Mid-cycle will occur in 2019.

Overdue inspection for piping and pressure

 vessels based on total number of circuits

 0
0 \therefore \therefore。 :

Inherently Safer Systems Implemented

Item Identifier	Caiegory Implementation Calegory	Risk Reduction Category	ISS Approach
AOOI-2016-028	PHA	Passive	Moderate--Modification of physical conditions to less hazardous conditions.
AO 19-2016-001	PHA	Passive	Moderate-Modification of physical conditions to less hazardous conditions.
AO 19-2016-016	PHA	Passive	Moderate-IModification of physical conditions to less hazardous conditions.
A039-2018-008	PHA	Inherent	Second Order Inherent Salely -the hazard associated with emergency response equipment was resolved through the application of inherently safer principles to reduce the potential escalation of an incident.
A056-2017-013	PHA	Passive	Moderate-Modification of physical conditions to less hazardous conditions.
A102-2017-013	PHA	Inherent	Second Order Inherent Sately -the hazard associated with emergency response equipment location was resolved through the application of inherently safer principles to reduce the potential escalation of an incident.
A102-2017-018	PHA	Inherent	Second Order Inherent Salety Application of inherently safer principles to reduce the likelihood of an incident.
A102-2017-019	PHA	Inherent	Second Order Inherent Safety Application of inherently safer principles to reduce the likelihood of an incident.
A102-2017-020	PHA	Inherent	Second Order Inherent Safety Application of inherently safer principles to reduce the likelihood of an incident.
A102-2017-021	PHA	Passive	Maderate-Modification of physical conditions to less hazardous conditions.

Annual Performance Review and Evaluation Submittal
June 30, 2019
*Attach additional pages as necessary
Name and address of Stationary Source: Chevron U.S.A. Inc. (CUSA), Richmond Refinery, 841 Chevron Way, Richmond, California 94802
2. Contact name and telephone number (should CCHMP have questions): GregShockey, 510-242-362
3. Summarize the status of the Stationary Source's Safety Plan and Program (450-8.030(B)(2)(i)): he CUSA Richmond Refinery (Refinery) initial Site Safety Plan (SSP) was completed in 2003, and the most recent revision is dated July 24,2018 .. The SSP was prepared in accordance with the City of Richmond Industrial Safety Ordinance (RISO), which was adopted by the Richmond City Council on January 17, 2002.
4. Summarize Safety Plan updates (i.e., brief explanation of update and corresponding date)
$(450-8.030(B)(2)(i i))$: The SSP was updated in 2018. The next revision will be shared in 3Q2021.
5. List of locations where Safety Plans are/will be available for review, Including contact telephone numbers if the source will provide individuals with copies of the document (4508.030(B)(2)(iii)): CCHMP Office at 4585 Pacheco Boulevard, Suite 100, Martinez; Richmond Public Library at 325 Civic
Center Plaza Richmond, CA 94804; and Point Richmond Public Library at 135 Washington Ave, Richmond CA 94801 Center Plaza Richmond, CA 94804; and Point Richmond Public Library at 135 Washington Ave., Richmond, CA 94801.
6. Provide any additions to the annual accident history reports (i.e. updates) submitted pursuant to Section 450-8.016(E)(2) of County Ordinance 98-48 (450-8.030(B)(2)(iii)) (i.e., provide information identified in Section $\mathbf{4 5 0 - 8 . 0 1 6 (E) (1)}$ for all major chemical accidents or performance review and evaluation submiltal (12-month history)): There were no major chemical performance review and evaluation submittal (12-month history)): There were no major chemica
accidents or releases ("MCAR") as defined in Section 450-8.014(h) between June 1,2018 and June 1, 2019.
7. Summary of each Root Cause Anslysis (Section $\mathbf{4 5 0 - 8 . 0 1 6 (C)}$) including the status of the analysis and the status of implementation of recommendations formulated during the analysis $(450-8.030(B)(2)(I V))$: There were no MCAR events between June 1, 2018 and June 1,2019 , and accordingly
there were no Root Cause Analyses conducted under section 450-8.016(c) during this period.
8. Summary of the status of implementation of recommendations formulated during audits, inspactions, Root Cause Analyses, or Incident Investigations conducted by the Department (450-8.030(B)(2)(v)): The 2011 Cal APR/ISO Audit had 73 ensure and consider recommendations, from which
85 total action itmes were created, and 85 of those action items are complete The 85 total action itmes were created, and 85 of those action items are complete. The final report and action plans
from the 2013 Cal ARP/Richmond ISO audit were accepted by the County and Richmond Refinery in 2015. The 2013 Cal ARP/ISO audit had 163 ensure and consider recommendations, from which 177 total action items were created, and 170 of those action items are complete. The remaining action items are in progress, some with
multiyear timelines for completion. The report and action plans from the 2016 CaI ARP/Richmond I5O audit had 74
 are complete. The ensure and consider items for the 2016 audit were finalized on November 6, 2017.

9. Summary of inherently safer systems implemented by the source including but not limited to
inventory reduction (i.e., intensification) and substitution $(450-8.030(\mathrm{~B})(2)($ vi)): Sce Attachment 1 on page 5.
10. Summarize the enforcement actions (including Notice of Deficiencies, Audit Reports, and any actions turned over to the Contra Costa County District Attorney's Office) taken with
the Stationary Source pursuant to Section $450-8.028$ of County Ordinance $98-48$ (450$8.030(\mathrm{~B})(2)($ vil)): There were no enforcement actions during this period.
11. Summarize total penalties assessed as a result of enforcement of this Chapter ($450-8.030(3)$):
No penalities have been assessed against this facility.
12. Summarize the total fees, service charges, and other assessments collected specifically for the support of the ISO ($450-\mathrm{z} .030$ (B)(4)): The total CaIARP Program fees for the eight facilities subject to the Industrial Safety Ordinance was $\$ 1,006,798$. The total Industrial Safety Ordinance program fees for these eight
facilities was- $\$ 535,535$. (NOTE: These fees include those for the County and City of Richmond ISO facilities). . Summarize total personnel and personnel years utllized by the jurisdiction to directly implement or administer this Chapter (450-8.030(B)(5)): 3,828 hours were used to audit/inspect and issue reports on the Risk Management Chapter of the Industrial Safety Ordinance.
14. Copies of any comments received by the source (that may not have been received by the Depart (450-8.030(B)(6)): N enfents were received during this period regarding the effectiveness of the local program that raise public safety issues.
15. Summarize how this Chapter improves industrial safety at your stationary source (450* 8.030(B)(7)): Operating safely is one of CUSA's core values and underpins our commitment to enhancing our process safety programs. The RISO assists CUSA in improving our process safety performance. We have worked
closely with CCHMP in its implementation of the RISO and its oversight of our operations, including during its closely with CCHMP in its implementation of the RISO and its oversight of our operations, including during its
periodic reviews of our operations. Consistent with this commitment, and as part of the company's efforts to continually improve its process safety performance, CUSA will continue to confer with the CCHMP as it refines and implements these actions.
16. List examples of changes made at your stationary source due to implementation of the Industrial Sarety Ordinance (e.g., recommendations from PHA's, Compliance Audits, and Incident
Investigations in units not subject to CaIARP regulations; recommendations from RCAs) th significantly decrease the severity or likelihood of accidental releases. In addition to the Inherently Safer Systems implemented in Question 9, CUSA has also made other changes to examples include the following: between June 2018 to June 2019
, Added a new requirement during the mechanical-run testing to measure and record with accelerometers (inspection, testing, and preventative maintenance tasks) refinery wide.

The Fixed Equipment Asset Strategies Project (piping) improves the refinery's existing asset strategy, designed to prevent and mitiga

$$
\begin{aligned}
& \text { these strategies. } \\
& \text { Completed Damage Mechanism Reviews on PSM-covered equipment and piping. }
\end{aligned}
$$

Completed Damage Mechanism Reviews on PSM-covered equipment and piping.
Continued performing Safeguard Protection Analysis (Layers of Protection Analysis) consistent with the RISO.
Equipment and procedural changes implemented to reduce risks identified during PHAs, including: * Implementing program to upgrade centrifugal pump seals to reduce or eliminate potential consequences that may result from seal failures.
" Completed project to install vibration monitoring and shutdown systems on API Class I pumps to minimize potential loss of containment

Continued effort to conduct procedural PHAs across refinery units to identify and mitigate potential
human factors that may lead to loss of containment: with a focus on emergency, startup, and shutdown procedures.
17. Summarize the emergency response activities conducted at the source (e.g., CWS or TEN activatlon) in response to major chemical accidents or releases: There were no level two or three
CWS or TENS activations between June 1,2018 and June 1,2019 . CWS or TENS activations between June 1, 2018 and June 1, 2019.
18. Common Process Safety Performance Indicators: Data collected Sept 2015 reported to work force June 2016
19. Date the results of the Safety Culture Assessment were reported to the workforce: June 2016
20. Answer the following regarding the Safety Culture Evaluation to the one listed in 18: - Survey method: Focus Groups

- Areas of improvements being addressed: Communication and resource planning
" If Yes, did the improvements meet the goals and if not was the action plan amended to address
what is being done to meet the goals? Yes, the improvements met the goals.
" If $N o$, has a new action plan been developed to address the identified areas of improvement? (Yes
or No) N/A or No) N/A

21. Have milestones and metrics been developed to determine how the Safety Culture Assessment actions are being implemented? Yes or if not, Why not?
Yes. Milestones are tracked in the Chevron Database system of record.

Past due PHA recommended actions, includes seismic and LCC recommended actions		
2018	Overdue	Repeat
January	0	0
February	0	0
March	0	0
April	0	0
May	0	0
June	0	0
July	0	0
August	0	0
September	0	0
October	0	0
November	0	0
December	0	0

* December

	New amine plant was located next to the SRUs to minimize piping runs of acid gas containing H2S.									L.ow flow SIS system installed on pump.	
	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{=}{E} \\ & \frac{N}{\Sigma} \end{aligned}$	$\begin{aligned} & 0.0 \\ & \frac{0}{E} \\ & \frac{1}{c} \end{aligned}$	$\begin{aligned} & \frac{0}{5} \\ & \frac{0}{0} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \frac{2}{\overline{0}} \\ & \frac{E}{E} \end{aligned}$			$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{8}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{0}{\Sigma} \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{0}{\Sigma} \end{aligned}$	
	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{U}{0} \\ & \stackrel{E}{E} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbb{D}} \\ & \stackrel{\rightharpoonup}{\mathbb{O}} \\ & \stackrel{E}{\Sigma} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{W}{0} \\ & \stackrel{E}{S} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{G}} \\ & \underline{0} \\ & \underline{0} \\ & \underline{c} \end{aligned}$		$\frac{0}{2}$	$\frac{0}{2}$	$\frac{0}{2}$		\% 0 0 0 0 0 0

Annual Performance Review and Evaluation Submittal
June 30, 2019

Attach additional pages as necessary

1. Name and address of Stationary Source: Chemtrade Logsitics West US, LLC. 525 Castro St. Richmond, CA 94801
2. Contact name and telephone number (should CCHMP have questions): AndrewHornbeck 973-650-0257.
3. Summarize the status of the Stationary Source's Safety Plan and Program (450-8.030(B)(2)(i)): The sites Safety Plan was submitted to the Hazardous Materials Program on 11/21/19 and is currently up to date.
4. Summarize Safety Plan updates (i.e., brief explanation of update and corresponding date) (450-8.030(B)(2)(ii)): The recent Safety Plan submission included a substantial amount of updates. Major updates included updating the plan to current safety practices and included changes to the sites investigation and corrective
action plans, human factors program, process hazard analysis procedures and document conto! procedures.
5. List of locations where Safety Plans are/will be available for review, including contact
telephone numbers if the source will provide individuals with copies of the document (4508.030(B)(2)(ii)): CCHMP Office at 4585 Pacheco Boulevard, Suite 100, Martinez; Richmond Public Library, (135
Washington Ave., Richmond, CA 94801).
6. Provide any additions to the annual accident history reports \{i.e. updates) submitted
pursuant to Section 450-8.016(E)(2) of County Ordinance $98-48$ (450-8.030(B)(2)(iii)) (i.e.,
provide information identified in Section $450-8.016(\mathrm{E})(1)$ for all major chemical accidents or releases occurring between the last annual performance review report and the current annual performance review and evaluation submittal (12-month history)): No major chemical releases
requiring a Root Cause Analysis since the last annual perfomance report.
7. Summary of each Root Cause Analysis (Section $\mathbf{4 5 0 - 8 . 0 1 6 (C)}$) including the status of the
analysis and the status of implementation of recommendations formulated during the analysis (450-8.030(B)(2)(iv)): 135 of 136 action items written as a result of the 2017 CCHMP audit have been
completed.
8. Summary of the status of implementation of recommendations formulated during audits, inspections, Root Cause Analyses, or Incident Investigations conducted by the Department (450-8.030 specifications.
marize the enforcement actions (including Notice of Deficiencies, Audit Reports, and the any actions turned over to the Contra Costa County District Attorney's Office) taken with the (vil)): There were no enforcement actions during this period.

If Yes, did the improvements meet the goals and if not was the action plan amended to address
what is being done to meet the goals? Yes, in progress, SCA to be conducted again in 2019 to
review progress
If No, has a new action plan been developed to address the identified areas of improvement? (Yes
or No)

> 20. Have milestones and metrics been developed to determine how the Safety Culture Assessment actions are being implemented? Yes or if not, Why not? Yes
21. Describe the process that included employees and their representatives used to determine if
the action items effectively changed the expected culture items: SCA will be conducted again in
2019 and the results will be compared to 2018 .
22. Date of the mid-cycle progress evaluation: August 2019

Did the action plan (for no 18) make progress on the identified areas of improvement? Yes or if
not, has a new action pan been developed? (Yes or No)
23. If a mid-cycle progress evaluation was performed during this reporting year, describe the process that included participation of employees or their representatives that determined
whether the action items effectively changed the expected culture items. N/A
24. Common Process Safety Performance Indicators:

Overdue inspection for piping and pressure
vessels based on total number of circuits
2018 Overdue Repeat
January
February
March
April
May
June
August
September
October
November
Total number of circuits: 351
Total number of annual plann
Total number of annual planned circuit inspections: 273

API/ACC TIER $1 \&$ TIER 2
INCIDENTS AND RATES
STARTING 2011

\qquad Petroleum refineries to report publically available refinery mean for API *Refinery Industry rates or means are not publicly available.

[^0]: The plume analysis diagrams contained in Section 4 are based on the following

 - Weather Conditions: Both January and July data represent 2 separate endpoints parameters are included in the analysis:
 - Wind speed . Temperature extremes. (The average high temperatures for January and July Temperature extremes.
 are used in the analysis)
 Cloud cover

 COCs: Utilization of ammonia/anhydrous ammonia, propane, and sulfuric acid as
 the COCs.

 - Worst-Case Scenario: Assumption that a worst-case scenario situation where a environment. By utilizing the worst-case scenario default situation, the plume
 analysis diagrams will allow for a more significant area of impact than may be analysis diagrams will allow for a

[^1]: U.S. Energy Information Administration, Petroleum and Other Liquids, 2019, on line at
 nus mbbliffea,
 Ferrellgas (Blue Rhino), 2018, Safety Data Sheet, Propane, on line at
 https://www.ferrelleas.com/media/66083/sds propane 12 18.pdf.

[^2]: Propane is heavier than air and is identified under United Nations (UN) Guide in the
 Department of Transport Emergency Response Guidebook (ERG) as No. 1075. The details Department of Transport Emergency Response Guidebook (ERG) as No. 1075. The details
 concerning transportation information from the Ferrellgas (Blue Rhino) Safety Data Sheet
 (SDS) are shown below:

[^3]: - U.S. Propane by Rall
 ${ }^{2} 201$
 A typical propane distribution route from producer to consumer is contained in the Alternative
 Fuels Data Center information, and is shown as follows:

[^4]:
 isolation zone is similar to the

[^5]: The ammonia plume is extensive and is over 6 miles long and up to 2 miles wide. The Red

[^6]: Altribute Value

[^7]:

[^8]: greater than 160 ppm (AEGL-2 [60 min])
 greater than 30 ppm (AEGL-1 [60 min$]$)
 wind direction confidence lines
 Note: Threat zone picture is truncated at the 6 mile limit.

[^9]: The Hazardous Materials Ombudsperson is a conduit for the public to express their concerns about how CCHMP personnel are performing their duties. Attachment A is a report from the Hazardous Materials Ombudsperson on the effectiveness of the position for this reporting period.

[^10]: 7. Summarize the emergency response activities conducted at the source (e.g., CWS or TEN local fire department within the last 12 mo . The $3 / 28 / 2019$ drill also included personnel from the P66 refinery.
[^11]: 21. Have milestones and metrics been developed to determine how the Safety Culture Assessment
[^12]: . Summary of inherently safer systems implemented by the source including but not limited to
 inventory reduction (i.e., intensification) and substitution ($450-8.030(B)(2)$ (vi)): See Attachment 1

[^13]: 'Petroleum refineries to report publically available refinery rate for API Tier 1 and Tier $\mathbf{2}$ classification.

